To Page Top
Start the content

Publications

Annual Report

  • loading...

Original Papers

  1. Analytical TEM Observation of Au Nano-particles on Cerium Oxide
    Tomoki AKITA, Mitsutaka OKUMURA, Koji TANAKA, Masanori KOHYAMA, Masatake HARUTA
    Catal. Today11762-68 (2006)
    [Web Page]External Link
  2. Special Issue of Catalysis Today Devoted to 5th WCOC
    Makoto MISONO, Makoto IMANARI, Masatake HARUTA, Shunichi FUKUZUMI, Takashi TATSUMI, Wataru UEDA
    Catal. Today1171-2 (2006)
    [Web Page]External Link
  3. Gas-Phase Radical Generation by Ti Oxide Clusters Supported on Silica: Application to the Direct Epoxidation of Propylene to Propylene Oxide Using Molecular Oxygen as an Oxidant
    Naoaki MIMURA, Susumu TSUBOTA, Kazuhisa MURATA, Kyouko BANDO, J. J. BRAVO-SUAREZ, Masatake HARUTA
    Catal. Lett11047-51 (2006)
    [Web Page]External Link
  4. Direct Propylene Epoxidation over Modified Ag/CaCO3 Catalysts
    Jiquing LU, J. J., BRAVO-SUAREZ, Masatake HARUTA, Ted. S. OYAMA
    Appl. Catal. A.: General302283-295 (2006)
    [Web Page]External Link
  5. Trimethylamine as a Gas-Phase Promoter: Highly Efficient Epoxidation of Propylene over Supported Gold Catalysts
    Biswajit CHOWDHURY, J. J. BRAVO-SUAREZ, Masakazu DATE, Susumu TSUBOTA, Masatake HARUTA
    Angew. Chem. Int. Ed.45412-415 (2006)
    [Web Page]External Link
  6. Gold Catalysts: Towards Sustainable Chemistry (Highlight)
    T. Ishida, M. Haruta
    Angew. Chem. Int. Ed.467154-7156 (2007)
    [Web Page]External Link
  7. New Generation of Gold Catalysts: Nanoporous Foams and Tubes – Is Unsupported Gold Catalytically Active?
    M. Haruta
    ChemPhysChem81911-1913 (2007)
    [Web Page]External Link
  8. In situ Measurements under Flow Condition of the CO Oxidation over Supported Gold Nanoparticles
    M. Date, H. Imai, S. Tsubota, M. Haruta
    Catal. Today122222-225 (2007)
    [Web Page]External Link
  9. Transient Technique for Identification of True Reaction Intermediates:  Hydroperoxide Species in Propylene Epoxidation on Gold/Titanosilicate Catalysts by X-ray Absorption Fine Structure Spectroscopy
    J. J. Bravo-Suarez, K. K. Bando, J. Lu, M. Haruta, T. Fujitani, S. T. Oyama
    J. Phys. Chem. C1121115-1123 (2008)
    [Web Page]External Link
  10. Direct Deposition of Gold Nanoparticles onto Polymer Beads and Glucose Oxidation with H2O2
    T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, M. Haruta
    J. Colloid Interface Sci.323105-111 (2008)
    [Web Page]External Link
  11. TEM and STEM Study of the Au Nano-particles Supported on Metal Oxides
    T. Akita, K. Tanaka, M. Kohyama, M. Haruta
    MRS Symposium Proceedings1026-C1714 (2008)
    [Web Page]External Link
  12. Theoretical Study of H2O and O2 Adsorption on Au Small Clusters
    M. Okumura, M. Haruta, Y. Kitagawa, T. Kawakami, K. Yamaguchi
    Gold Bull.4040-44 (2007)
    [Web Page]External Link
  13. A kinetic study on the low temperature oxidation of CO over Ag-contaminated Au fine powder
    Y. Iizuka, T. Miyamae, T. Miura, M. Okumura, M. Date, M. Haruta
    J. Catal.262280-286 (2009)
    [Web Page]External Link
  14. HAADF-STEM observation of Au nanoparticles on TiO2
    T. Akita, K. Tanaka, M. Kohyama, and M. Haruta
    Surf. Interface Anal.401760–1763 (2008)
    [Web Page]External Link
  15. Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins
    T. Ishida, S. Okamoto, R. Makiyama, M. Haruta
    Appl. Catal. A: Gen.353243-248 (2009)
    [Web Page]External Link
  16. Reduction of 4-nitrophenol over Au nanoparticles deposited on PMMA
    K. Kuroda, T. Ishida, M. Haruta
    J. Mol. Catal. A: Chem.2987-11 (2009)
    [Web Page]External Link
  17. Coprecipitated gold-tricobalt tetraoxide catalyst for heterogeneous hydroformylation of olefins
    X. Liu, M. Haruta, M. Tokunaga
    Chem. Lett37(12)1290-1291 (2008)
    [Web Page]External Link
  18. Reactions of gold atoms with nitrous oxide in excess argon: A matrix infrared spectroscopic and theoretical study
    L. Jiang, M. Kohyama, M. Haruta, Q. Xu
    J. Phys. Chem. A11213495-13499 (2008)
    [Web Page]External Link
  19. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation
    T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta
    Angew. Chem. Int. Ed.479265-9268 (2008)
    [Web Page]External Link
  20. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols
    T. Ishida, M. Nagaoka, T. Akita, M. Haruta
    Chem. Eur. J.148456-8460 (2008)
    [Web Page]External Link
  21. Theoretical investigation of the hetero-junction effect in PVP-stabilized Au13 clusters. The role of PVP in their catalytic activities
    M. Okumura, Y. Kitagawa, T. Kitagawa, M. Haruta
    Chem. Phys. Lett.459133-136 (2008)
    [Web Page]External Link
  22. Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods
    X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen
    Nature458746-749 (2009)
    [Web Page]External Link
  23. N-Formylation of Amines via the Aerobic Oxidation of Methanol over Supported Gold Nanoparticles
    T. Ishida, M. Haruta
    ChemSusChem2538-541 (2009)
    [Web Page]External Link
  24. Pretreatments of Co3O4 at Moderate Temperature for CO oxidation at -80 °C
    Y. Yu, T. Takei, H.Ohashi, H. He, X. Zhang, M. Haruta
    J. Catal.267121-128 (2009)
    [Web Page]External Link
  25. Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters
    J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta
    Angew. Chem. Int. Ed.487862-7866 (2009) marked as “Hot Paper”
    [Web Page]External Link
  26. Deposition of Gold Nanoparticles on Carbons for Aerobic Glucose Oxidation
    H. Okatsu, N. Kinoshita, T. Akita, T. Ishida, M. Haruta
    Appl. Catal. A: Gen.3698-14 (2009)
    [Web Page]External Link
  27. One-pot N-Alkylation of Primary Amines to Secondary Amines by Gold Clusters Supported on Porous Coordination Polymers
    T. Ishida, N. Kawakita, T. Akita, M. Haruta
    Gold Bull.42267-274 (2009)
    [Web Page]External Link
  28. Aerobic Oxidation of Glucose over Gold Nanoparticles Deposited on Cellulose
    T. Ishida, H. Watanabe, T. Bebeko, T. Akita, M. Haruta
    Appl. Catal. A: Gen.37742-46 (2010)
    [Web Page]External Link
  29. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework
    H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu
    J. Am. Chem. Soc.13111302-11303 (2009)
    [Web Page]External Link
  30. Synergy in Catalysis of Bimetallic Au-Ni Nanoparticles Embedded in SiO2 Nanospheres for Hydrolytic Dehydrogenation of Ammonia Borane
    H.-L. Jiang, T. Umegaki, T. Akita, X.-B. Zhang, M. Haruta, Q. Xu
    Chem. Eur. J.163132-3137 (2010)
    [Web Page]External Link
  31. Hydrogen Dissociation by Gold Clusters
    T. Fujitani, I. Nakamura, T. Akita, M. Okumura, and M.Haruta
    Angew. Chem. Int. Ed.489515-9518 (2009)
    [Web Page]External Link
  32. Hydroformylation of Olefins by Au/Co3O4 Catalysts
    X. Liu, B. Hu, K. Fujimoto, M. Haruta, M. Tokunaga
    Appl. Catal. B: Environ.92411-421 (2009)
    [Web Page]External Link
  33. One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles
    Y. Yamane, X. Liu, A. Hamasaki, T. Ishida, M. Haruta, T. Yokoyama, M. Tokunaga
    Org. Lett.115162-5165 (2009)
    [Web Page]External Link
  34. Gold Clusters Supported on La(OH)3 for CO Oxidation at 193 K
    T. Takei, I. Okuda, K. Bando, T. Akita, M. Haruta
    Chem. Phys. Lett.493207-211 (2010)
    [Web Page]External Link
  35. Gold Clusters Supported on Alkaline Treated TS-1 for Highly Efficient Propene Epoxidation with O2 and H2
    J. Huang, T. Takei, T. Akita, H. Ohashi, M. Haruta
    Appl. Catal. B Environ.95430-438 (2010)
    [Web Page]External Link
  36. Influence of the Preparation Methods for Pt/CeO2 and Au/CeO2 Catalysts in CO Oxidation
    S. Shimada, T. Takei, T. Akita, S. Takeda, M. Haruta
    Stud. Surf. Sci. Catal.175843-847 (2010)
    [Web Page]External Link
  37. Deposition of Gold Clusters onto Porous Coordination Polymers by Solid Grinding
    T. Ishida, N. Kawakita, T. Akita, M. Haruta
    Stud. Surf. Sci. Catal.175839-842 (2010)
    [Web Page]External Link
  38. Aerobic Oxidation of Glucose over Gold Nanoparticles Deposited on Cellulose
    T. Ishida, H.Watanabe, T. Bebeko, T. Akita, M. Haruta
    Appl. Catal. A: Gen.37742-46 (2010)
    [Web Page]External Link
  39. One-Step Seeding Growth of Magnetically Recyclable Au@Co Core-Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane
    J.-M. Yan, X.-B. Zhang, T. Akita, M. Haruta, Q. Xu
    J. Am. Chem. Soc.1325326-5327 (2010)
    [Web Page]External Link
  40. Synthesis of Acetoaldehyde, Acetic Acid, and Others by the Dehydrogenation and Oxidation of Ethanol
    T. Takei, N. Iguchi, M. Haruta
    Catal. Surv. Asia1580-88 (2011)
    [Web Page]External Link
  41. Propene Epoxidation with O2 and H2:Identification of the Most Active Gold Cluster
    J. H. Huang, E. Lima, T. Akita, A. Guzman, C. X. Qi, T. Takei M. Haruta
    J. Catal.2788-15 (2011)
    [Web Page]External Link
  42. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework
    H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu
    J. Am. Chem. Soc.1331304-1306 (2011)
    [Web Page]External Link
  43. Ultrafine Gold Clusters Incorporated into a Metal-Organic Framework
    H.-L. Jiang, Q.-P. Lin, T. Akita, B. Liu, H. Ohashi, H. Oji, T. Honma, T. Takei, M. Haruta, Q. Xu
    Chem. Eur. J.1778-81 (2011)
    [Web Page]External Link
  44. Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2
    Caixia Qi, J. Huang, Shuangquan Bao, Huijuan Su, T. Akita, M.Haruta
    J. Catal.28112-20 (2011)
    [Web Page]External Link
  45. Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts
    T. Takei, N. Iguchi, M. Haruta
    New J. Chem.35(10)2227-2233 (2011)
    [Web Page]External Link
  46. Role of perimeter interfaces in catalysis by gold nanoparticles
    M. Haruta
    Faraday Discuss.15211-32 (2011)
    [Web Page]External Link
  47. Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream
    Y. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa
    Catal. Sci. Technol.1920-922 (2011)
    [Web Page]External Link
  48. Systematic Morphology Changes of Gold Nanoparticles Supported on CeO2 during CO Oxidation
    T. Uchiyama, H.Yoshida, Y. Kuwauchi, S. Ichikawa, S.Shimada, M. Haruta, S. Takeda
    Angew. Chem. Int. Ed.5010157-10160 (2011)
    [Web Page]External Link
  49. Temperature-Dependent Change in Shape of Platinum Nanoparticles Supported on CeO2 during Catalytic Reactions
    H. Yoshida, K. Matsuura, Y. Kuwauchi, H. Kohno, S. Shimada, M. Haruta, S. Takeda
    Appl. Phys. Express4065001 (2011)
    [Web Page]External Link
  50. From this year, all papers by our staff were listed.

  51. One-Step Synthesis of Magnetically Recyclable Au/Co/Fe Triple-Layered Core-Shell Nanoparticles as Highly Efficient Catalysts for the Hydrolytic Dehydrogenation of Ammonia Borane
    K. Aranishi, H.-L. Jiang, T. Akita, M. Haruta, Q. Xu
    Nano Res.41233-1241 (2011)
    [Web Page]External Link
  52. Sequential HAADF-STEM observation of structural changes in Au nanoparticles supported on CeO2
    T. Akita, S. Tanaka, K. Tanaka, M. Haruta, M. Kohyama
    J. Mater. Sci.464384-4391 (2011)
    [Web Page]External Link
  53. Catalytically Highly Active Top Gold Atoms on Palladium Nanocluster
    H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima
    Nature Materials1149-52 (2012)
    [Web Page]External Link
  54. Support effects of metal oxides on gold –catalyzed one-pot N-alkylation of amine with alcohol
    T. Ishida, R. Takamura, T.Takashi, T. Akita, M. Haruta
    Appl. Catal. A: Gen.413-414261-266 (2012)
    [Web Page]External Link
  55. Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions
    H. Yoshida, Y. Kuwauchi, J. R. Jinschek, K. Sun, S. Tanaka. M. Kohyama, S.Shimada, M. Haruta, S. Takeda
    Science335317-319 (2012)
    [Web Page]External Link
  56. Metal oxide-catalyzed ammoxidation of alcohols to nitriles and promotion effect of gold nanoparticles for one-pot amide synthesis
    T. Ishida, H. Watanabe, T. Takei, A. Hamasaki, M. Tokunaga, M. Haruta
    Appl. Catal. A: Gen.425-42685-90 (2012)
    [Web Page]External Link
  57. Propene epoxidation with oxygen over gold clusters: Role of basic salts and hydroxides of alkalis
    J. Huang, T. Takei, H. Ohashi, M. Haruta
    Appl. Catal. A: Gen.435-436115-122 (2012)
    [Web Page]External Link
  58. Base-free direct oxidation of 1-octanol to octanoic acid and its octyl ester over supported gold catalysts
    T. Ishida, Y. Ogihara, H. Ohashi, T. Akita, T. Honma, H. Oji, M. Haruta
    ChemSusChem52243-2248 (2012)
    [Web Page]External Link
  59. Intrinsic catalytic structure of gold nanoparticles supported on TiO2
    Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, S. Takeda
    Angew. Chem. Int. Ed.517729-7733 (2012)
    [Web Page]External Link
  60. Air purification by gold catalysts supported on PET nonwoven fabric
    M. Ikegami, T. Matsumoto, Y. Kobayashi, Y. Jikihara, T. Nakayama, H. Ohashi, T. Honma, T. Takei, M. Haruta
    Appl. Catal. B: Environ.134-135130-135 (2013)
    [Web Page]External Link
  61. Gold nanoparticles assisted formation of cobalt species for intermolecular hydroaminomethylation and intramolecular cyclocarbonylation of olefins
    X. Liu, A. Hamasaki, Y. Yamane, S. Aikawa, T. Ishida, M. Haruta, M. Tokunaga
    Catal. Sci. Techol.33000-3006 (2013)
    [Web Page]External Link
  62. Infrared spectroscopic and theoretical studies on the formation of Au2NO- and AunNO (n = 2–5) in solid argon
    Y.-L. Teng, M. Kohyama, M. Haruta, Q. Xu
    J. Chem. Phys.130134511 (2009)
    [Web Page]External Link
  63. In Situ UV-vis and EPR Study on the Formation of Hydroperoxide Species during Direct Gas Phase Propylene Epoxidation over Au/Ti-SiO2 Catalyst
    B. Chowdhury, J. J. Bravo-Suárez, N. Mimura, J. Q. Lu, K. K. Bando, S. Tsubota, M. Haruta
    J. Phys. Chem. B11022995-22999 (2006)
    [Web Page]External Link
  64. Synergetic combination of an enzyme and gold catalysts for glucose oxidation in neutral aqueous solution
    A. Taketoshi, S. Takenouchi, T. Takei, M. Haruta
    Appl. Catal. A: Gen.468453-458 (2013)
    [Web Page]External Link
  65. Aerobic oxidation of sulfides to sulfoxides catalyzed by gold/manganese oxides
    A. Taketoshi, P. Concepción, H. García, A. Corma, M. Haruta
    Bull. Chem. Soc. Jpn.861412-1418 (2013)
    [Web Page]External Link
  66. Preparation of microporus polymer-encapsulated Pd nanoparticles and their catalytic performance for hydrogeneration and oxidation
    T. Ishida, Y. Onuma, K. Kinjo, A. Hamasaki, H. Ohashi, T. Honma, T. Akita, T. Yokoyama, M. Haruta
    Tetrahedron706150-6155 (2014)
    [Web Page]External Link
  67. With high sensitivity and with wide-dynamic-range localized surface-plasmon resonance sensor for volatile organic compounds
    A. Monkawa, T. Nakagawa, H. Sugimori, E. Kazawa, K. Shibamoto, T. Takei, M. Haruta
    Sens. Actuators B: Chem.1961-9 (2014)
    [Web Page]External Link
  68. Ethanol Oxidation in Water Catalyzed by Gold Nanoparticles Supported on NiO Doped with Cu
    T.Takei, J. Suenaga, T. Ishida, M. Haruta
    Top. Catal.58295-301 (2015)
    [Web Page]External Link
  69. Synthesis and Catalytic Activity of Crown Jewel-Structured (IrPd)/Au Trimetallic Nanoclusters
    H. Zhang, L. Lu, K. Kawashima, M. Okumura, M. Haruta, N. Toshima
    Adv. Mater.271383-1388 (2015)
    [Web Page]External Link
  70. Interplay of Theoretical Calculations and Experiments for a Study of Catalysis by Gold
    M. Okumura, M. Haruta
    Catal. Today25929581–86 (2016)
  71. Deposition of Gold Nanoparticles on Niobium Pentoxide with Different Crystal Structures for Room-Temperature Carbon Monoxide Oxidation
    T. Murayama, W. Ueda, M. Haruta
    ChemCatChem82620-2624 (2016)
  72. Correlation between catalytic activity of supported gold catalysts for carbon monoxide oxidation and metal-oxygen binding energy of the support metal oxides
    T. Fujita, M. Horikawa, T. Takei, T. Murayama, M. Haruta,
    Chin. J. Catal.371651–1655 (2016)
  73. Preparation of gold nanoparticles supported on Nb2O5 by deposition precipitation and deposition reduction methods and their catalytic activity for CO oxidation
    T. Murayama, M. Haruta
    Chin. J. Catal.371694–1701 (2016)
  74. Efficient Decarbonylation of Furfural to Furan Catalyzed by Three-Atom Palladium Clusters supported on Zirconia
    T. Ishida, K. Kume, K. Kinjo, T. Honma, K. Nakada, H. Ohashi, T. Yokoyama, A. Hamasaki, H. Murayama, Y. Izawa, M. Utsunomiya, M. Tokunaga
    ChemSusChem93441–3447 (2016)
  75. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation
    Q. He, S. J. Freakley, J. K. Edwards, A. F. Carley, A. Y. Borisevich, Y. Mineo, M. Haruta, G.J. Hutchings, C. J. Kiely
    Nature Commun.712905 (2016)
  76. Carbon Monoxide Oxidation by Polyoxometalate‐Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature‐Dependent Activation Properties
    T. Yoshida, T. Murayama, N. Sakaguchi, M. Okumura, T. Ishida, M. Haruta
    Angew. Chem. Int. Ed.571523–1527 (2018)
  77. Preparation of gold clusters on metal oxides by deposition-precipitation with microwave drying and their catalytic performance for CO and sulfide oxidation
    A. Taketoshi, T. Ishida, H. Ohashi, T. Honma, M. Haruta
    Chin. J. Catal.381888–1898 (2017)
  78. Low-temperature CO oxidation over combustion made Fe and Cr doped Co3O4 catalysts: Role of dopant’s nature toward achieving superior catalytic activity and stability
    T. Baidya, T. Murayama, P. Bera, O. Safonova, P. Steiger, N. Katiyar, K. Biswas, M. Haruta
    J. Phys. Chem. C12115256–15265 (2017)
  79. Remarkable enhancement of Fe-V-Ox composite metal oxide to gold catalyst for CO oxidation in the simulated amosphere of CO2 laser
    Q. Lin, C. Han, H. Su, L. Sun, T. Ishida, T. Honma, X. Sun, Y. Zheng, C. Qi,
    RSC Adv738780–38783 (2017)
  80. Wacker Oxidation of Terminal Alkenes over ZrO2 Supported Pd Nanoparticles under Acid- and Co-Catalyst-Free Conditions
    Z. Zhang, Y. Kumamoto, T. Hashiguchi, T. Mamba, H. Murayama, E. Yamamoto, T. Ishida, T. Honma, M. Tokunaga
    ChemSusChem103482-3489 (2017)
  81. Chloride-Free and Water-Soluble Au Complexes for Preparation of Supported Small Nanoparticles by Impregnation Method
    H. Murayama, T. Hasegwa, Y. Yamamoto, M. Tone, M. Kimura, T. Ishida, T. Honma, M. Okumura, A. Isogai, T. Fujii, M. Tokunaga
    J. Catal.35374-80 (2017)
  82. Adsorption Behavior of Au(III) Complex Ion on Nickel Carbonate and Nickel Hydroxide
    H. Ando, D. Kawamoto, H. Ohashi, T. Honma, T. Ishida, Y. Okaue, M. Tokunaga, T. Yokoyama
    Colloids Surf. A537383-389 (2018)
  83. Oxide-Supported Palladium and Gold Nanoparticles for Catalytic C-H Transformations
    T. Ishida, Z. Zhang, H. Murayama, M. Tokunaga
    J. Synth. Org. Chem., Jpn.751150-1161 (2017)
  84. W-Ti-O Mixed Metal Oxide Catalyzed Dehydrative Cross-etherification of Alcohols
    A. Yada, T. Murayama, J. Hirata, T. Nakashima, M. Tamura, Y. Kon, W. Ueda
    Chem. Lett.in press, (2018)
  85. Facile Formation of Lactic Acid from a Triose Sugar in Water over Niobium Oxide with a Deformed Orthorhombic Phase
    K. Nakajima, J. Hirata, M. Kim, N. K. Gupta, T. Murayama, A. Yoshida, N. Hiyoshi, A. Fukuoka, W. Ueda
    ACS Catal.8283-290 (2018)
  86. Synthesis of crystalline microporous Mo-V-Bi oxide for selective (amm)oxidation of light alkanes
    S. Ishikawa, Y. Goto, Y. Kawahara, S. Inukai, N. Hiyoshi, N. F. Dummer, T. Murayama, A. Yoshida, M. Sadakane, W. Ueda
    Chem. Mater.292939-2950 (2017)
  87. Hydrothermal Synthesis of a Layered-type W-Ti-O Mixed Metal Oxide and its Solid Acid Activity
    T. Murayama, K. Nakajima, J. Hirata, K. Omata, E. J. M. Hensen, W. Ueda
    Catal. Sci. Tech.7243-250 (2017)
  88. Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to γ-valerolactone
    S. Ishikawa, D. Jones, S. Iqbal, R. Christian, D. J Morgan, D. J. Willock, P. Miedziak, J. K. Bartley, J. Edwards, T. Murayama, W. Ueda, G. Hutchings,
    Green Chem.19225-236 (2017)
  89. Polyoxometalate-Assisted, One-Pot Synthesis of a Pentakis((triphenylphosphane)gold)ammonium(2+) Cation Containing Regular Trigonal-Bipyramidal Geometries of Five Bonds to Nitrogen
    K. Nomiya, K. Endo, Y. Murata, S. Sato, S. Shimazaki, S. Horie, E. Nagashima, Y. Yasuda, T. Yoshida, S. Matsunaga, T. Matsubara
    Inorg. Chem.571504-1516 (2018)
  90. The Symmetric Raman Tensor Contributes to Chiral Vibrational Sum Frequency Generation from Binaphthyl Amphiphile Monolayers on Water – Study of Electronic Resonance Amplitude and Phase Profiles
    M. Okuno, D. Ishikawa, W. Nakanishi, K. Ariga, T. Ishibashi
    J. Phys. Chem. C12111241-11250 (2017)
  91. pH-Responsive Cotton Effects in the d-d Transition Band of Self-Assembling Copper (II) Complexes with a Cholesteryl-Armed Ligand
    T. Sagami, S. Umemoto, Y. O. Tahara, M. Miyata, Y. Yonamine, D. Ishikawa, T. Mori, K. Ariga, H. Miyake, S. Shinoda,
    Bull. Chem. Soc. Jpn.90739-745 (2017)
  92. Mechanically Induced Opening-Closing Movements of Binaphthyl Molecular Pliers: Digital Phase Transition v.s. Continuous Conformational Change
    T. Mori, D. Ishikawa, Y. Yonamine, Y. Fujii, J. P Hill, I. Ichinose, K. Ariga, W. Nakanishi
    ChemPhysChem181470-1477 (2017)
  93. Novel Preparation of Poly(3,4-ethylene dioxythiophene)-Poly(styrenesulfonate)-Protected Noble Metal Nanoparticles as Organic-Inorganic Materials
    S. Hata, T. Omura, K. Oshima, Y. Du, Y. Shiraishi, N. Toshima
    Bull. Soc. Photogr. Imag. Jpn.2713-18 (2017)
  94. Electrochemical Production of Glycolic Acid from Oxalic Acid Using a Polymer Electrolyte Alcohol Electrosynthesis Cell Containing a Porous TiO2 Catalyst
    M. Sadakiyo, S. Hata, X. Cui, M. Yamauchi
    Sci. Rep.317032 (2017)
  95. Improved Thermoelectric Behavior of Poly(3,4-ethylene dioxythiophene)-Poly(styrenesulfonate) using Poly(N-vinyl-2-pyrrolidone)-coated GeO2 Nanoparticles
    Y. Shiraishi, S. Hata, Y. Okawauchi, K. Oshima, H. Anno, N. Toshima
    Chem. Lett.46933-936 (2017)
  96. Carbon neutral energy cycles using alcohols
    T. Fukushima, S. Kitano, S. Hata, M. Yamauchi
    Sci. Tech. Adv. Mater.19142-152 (2018)
  97. A Systematic Study of the Mass Transport, Kinetic and Thermodynamic Properties of the FeIII/II Process at Glassy Carbon and Boron-Doped Diamond Electrodes
    M.Y. Lin, J.Z. Li, D.W. Pan, A.M. Bond, J. Zhang
    Electrochim. Acta249421-430 (2017)
  98. Speciation determination of iron and its spatial and seasonal distribution in coastal river
    Y. Zhu, X.P. Hu, D.W. Pan,H.T. Han, M.Y. Lin, Y. Lu, C.C. Wang, R.L. Zhu
    Sci. Rep.8(1)2576 (2018)
  99. An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters
    Y. Zhu, D.W. Pan, X.P. Hu, H.T. Han, M.Y. Lin, C.C. Wang
    Sensor Actuat B-Chem.2431-7 (2017)
  100. Role of the Acid Site for Selective Catalytic Oxidation of NH3 over Au/Nb2O5
    Mingyue Lin*, Baoxiang An, Nao Niimi, Yohei Jikihara, Tsuruo Nakayama, Tetsuo Honma, Takashi Takei, Tetsuya Shishido, Tamao Ishida, Masatake Haruta, and Toru Murayama*
    ACS Catalysis91753-1756 (2019)
  101. Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size
    Luong Xuan Dien, Tamao Ishida*, Ayako Taketoshi, Duc Q Truong, Huynh Dang Chinh, Tetsuo Honma, Toru Murayama, Masatake Haruta*
    Applied Catalysis B: Environmental241539-547 (2019)
  102. A zeolitic vanadotungstate family with structural diversity and ultrahigh porosity for catalysis
    Zhenxin Zhang, Qianqian Zhu, Masahiro Sadakane, Toru Murayama, Norihito Hiyoshi, Akira Yamamoto, Shinichi Hata, Hisao Yoshida, Satoshi Ishikawa, Michikazu Hara, Wataru Ueda
    Nature communications93789 (2018)
  103. The Effects of Dopants on the Cu–ZrO2 Catalyzed Hydrogenation of Levulinic Acid
    Jun Hirayama, Igor Orlowski, Sarwat Iqbal, Mark Douthwaite, Satoshi Ishikawa, Peter J Miedziak, Jonathan K Bartley, Jennifer Edwards, Qian He, Robert L Jenkins, Toru Murayama, Christian Reece, Wataru Ueda, David J Willock, Graham J Hutchings
    The Journal of Physical Chemistry Cin press, (2019)
  104. Versatile etherification of alcohols with allyl alcohol by a titanium oxide-supported molybdenum oxide catalyst: gradual generation from titanium oxide and molybdenum oxide
    Yoshihiro Kon, Tadahiro Fujitani, Takuya Nakashima, Toru Murayama, Wataru Ueda
    Catalysis Science & Technology84618-4625 (2018)
  105. W-Ti-O Mixed Metal Oxide Catalyzed Dehydrative Cross-etherification of Alcohols
    Akira Yada, Toru Murayama, Jun Hirata, Takuya Nakashima, Masanori Tamura, Yoshihiro Kon,* Wataru Ueda*
    Chemistry letters47447-449 (2018)
  106. Selective adsorption of 1,3-dimethyltrisulfane (DMTS) responsible for aged odour in Japanese sake using supportd gold nanoparticles
    H. Murayama, Y. Yamamoto, M. Tone, T. Hasagewa, M. Kimura, T. Ishida, A. Isogai, T. Fujii, M. Okumura, M. Tokunaga
    Sci. Rep.816064 (2018)
  107. Cobalt hematoporphyrin inhibits CLEC-2–podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice
    Nagaharu Tsukiji, Makoto Osada, Tomoyuki Sasaki, Toshiaki Shirai, Kaneo Satoh, Osamu Inoue, Norihiko Umetani, Chihiro Mochizuki, Tamio Saito, Soichi Kojima, Hideyuki Shinmori, Yukio Ozaki and Katsue Suzuki-Inou
    Blood adv.22214-2225 (2018)
  108. Determination of iron in seawater: from the laboratory to in situ measurements
    Mingyue Lin, Xueping Hu, Dawei Pan*, Haitao Han
    Talanta188135-144 (2018)
  109. Room temperature carbon monoxide oxidation based on two-dimensional gold-loaded mesoporous iron oxide nanoflakes
    Yusuf Valentino Kaneti, Shunsuke Tanaka, Yohei Jikihara, Tsuruo Nakayama, Yoshio Bando, Masatake Haruta, Md. Shahriar A. Hossain, Dmitri Golberg and Yusuke Yamauchi,
    Chemical Communications548514-8517 (2018)
  110. Bulk Vanadium Oxide versus Conventional V2O5/TiO2: NH3-SCR Catalysts Working at a Low Temperature Below 150oC
    Yusuke Inomata, Shin-ichi Hata, Makoto Mino, Eiji Kiyonaga, Keiichiro Morita, Kenji Hikino, Kazuhiro Yoshida, Hiroe Kubota, Takashi Toyao, Ken-ichi Shimizu, Masatake Haruta, Toru Murayama*
    ACS Catalysis99327-9331 (2019)
  111. High Dimensionally Structured W-V Oxides as Highly Effective Catalysts for Selective Oxidation of Toluene
    Toru Murayama*, Satoshi Ishikawa, Norihito Hiyoshi, Yoshinori Goto, Zhenxin Zhang, Takashi Toyao, Ken-ichi Shimizu*, Shutoku Lee, Wataru Ueda*,
    Catalysis Todayin press (2019)
  112. CO oxidation over Au/ZnO: Unprecedented Change of the Reaction Mechanism at a Low Temperature Caused by a Different O2 Activation Process
    Takashi Fujita, Tamao Ishida*, Kohei Shibamoto, Tetsuo Honma, Hironori Ohashi, Toru Murayama*, Masatake Haruta
    ACS Catalysis98364-8372 (2019)
  113. Oxidative Esterification of Aliphatic Aldehydes and Alcohols with Ethanol over Gold Nanoparticle Catalysts in Batch and Continuous Flow Reactors
    Ayako Taketoshi, Tamao Ishida, Toru Murayama, Tetsuo Honma, Masatake Haruta
    Applied Catalysis A: General585117169 (2019)
  114. Ultra-Low Temperature CO Oxidation Activity of Octahedral Site Cobalt Species in Co3O4 Based Catalysts: Unravelling the Origin of Unique Catalytic Property
    Tinku Baidya, Toru Murayama, Subramanian Nellaiappan, Nirmal Kumar Katiyar, Parthasarathi Bera, Olga Safonova, Mingyue Lin, Kaustubh R Priolkar, Samapti Kundu, Bolla Srinivasa Rao, Patrick Steiger, Sudhanshu Sharma, Krishanu Biswas, Swapan Kumar Pradhan, Lingaiah Nakka, Kirtiman Deo Malviya, Masatake Haruta
    The Journal of Physical Chemistry C12319557–19571 (2019)
  115. Influence of the structure of trigonal Mo-V-M3rd oxides (M3rd = -, Fe, Cu, W) on catalytic performances in selective oxidations of ethane, acrolein, and allyl alcohol
    Satoshi Ishikawa, Toru Murayama, Benjamin Katryniok, Franck Dumeignil, Marcia Araque, Svetlana Heyte, Sébastien Paul, Yudai Yamada, Mizuki Iwazaki, Nagisa Noda, Wataru Ueda
    Applied Catalysis A: General584117151 (2019)
  116. Effect of Supported MAO Cocatalysts in Ethylene Polymerization and Ethylene/1-Hexene Copolymerization Using Cp*TiCl2(O-2,6-iPr2C6H3) Catalyst
    Palawat Unruean, Wannida Apisuk, Youhei Kawabata, Toru Murayama, Boonyarach Kitiyanan, and Kotohiro Nomura*
    Molecular Catalysis475110490 (2019)
  117. Low-temperature NH3-SCR Activity of Nanoparticulate Gold Supported on a Metal Oxide’
    Yusuke Inomata, Makoto Mino, Sinichi Hata, Eiji Kiyonaga, Keiichiro Morita, Kenji Hikino, Kazuhiro Yoshida, Masatake Haruta, and Toru Murayama*
    Journal of the Japan Petroleum Institute62234-243 (2019)
  118. Dehydrative Allylation of Amine with Allyl Alcohol by Titanium Oxide Supported Molybdenum Oxide Catalyst
    Yoshihiro Kon*, Takuya Nakashima, Tadahiro Fujitani, Toru Murayama, Wataru Ueda*
    Synlett30(3)287-292 (2019)
  119. Redox-Active Zeolitic Transition Metal Oxides Based on ε-Keggin Units for Selective Oxidation
    Zhenxin Zhang*, Satoshi Ishikawa, Qianqian Zhu, Toru Murayama, Masahiro Sadakane, Michikazu Hara, Wataru Ueda*
    Inorganic chemistry58, 96283-6293 (2019)
  120. Ablation controlled laser desorption/ionization mass spectrometry by using improved transmission geometry
    Kohei Shibamoto, Daisuke Furuya, Takashi Fujita
    Chemical Physics Letters738136892 (2019)
  121. Snake venom rhodocytin induces plasma extravasation via toxin-mediated interactions between platelets and mast cells
    Yuki Nakamura, Tomoyuki Sasaki, Chichiro Mochizuki, Kayoko Ishimaru, Schuichi Koizumi, Hideyuki Shinmori, Katsue Suzuki-Inoue, Atsuhito Nakao
    Scientific Reports915958 (2019)
  122. Dendrimer-templated Synthesis and Characterization of Tin Oxide Quantum Dots Deposited on Silica Glass Substrate
    Yusuke Inomata, Ken Albrecht, Naoki Haruta, Kimihisa Yamamoto*
    Chemistry of Materials318373–8382 (2019)
  123. DNA origami nanoplate-based emulsion with nanopore function
    Daisuke Ishikawa, Yuki Suzuki, Chikako Kurokawa, Masayuki Ohara, Misato Tsuchiya, Masamune Morita, Miho Yanagisawa, Masayuki Endo, Ryuji Kawano, Masahiro Takinoue
    Angewandte Chemie International Edition5815299–15303 (2019)
  124. Multi-dimensional Crystal Structuring of Complex Metal Oxide Catalysts of Group V and VI Elements by Unit-Assembling
    Satoshi Ishikawa, Zhenxin Zhang, Toru Murayama, Norihito Hiyoshi, Masahiro Sadakane, Wataru Ueda*
    Topics in Catalysis621157–1168 (2019)
  125. CO2 Reduction to Methanol on Au/CeO2 Catalysts: Mechanistic Insights from De-Activation and SSITKA Measurements
    Azita Rezvani, Ali Abdel-Mageed, Tamao Ishida, Toru Murayama, Magdalena Parlinska-Wojtan, Jürgen R. Behm
    ACS Catalysis103580-3594 (2020)
  126. Oxidation of β-Nicotinamide adenine dinucleotide (NADH) by Au Cluster and Nanoparticle Catalysts Aiming for Coenzyme Regeneration in Enzymatic Glucose Oxidation
    Jun-ichi Nishigaki, Tamao Ishida, Tetsuo Honma, Masatake Haruta
    ACS Sus. Chem. Eng.8(28)10413-10422 (2020)
  127. Synthesis of Bulk Vanadium Oxide with a Large Surface Area Using Organic Acids and Its Low-Temperature NH3-SCR Activity
    Yusuke Inomata, Shinichi Hata, Eiji Kiyonaga, Keiichiro Morita, Kazuhiro Yoshida, Masatake Haruta, Toru Murayama*
    Catalysis Today376188-196 (2021)
  128. C, N Co-Decorated Alumina-Supported Au Nanoparticles: Enhanced Catalytic Performance for Selective Hydrogenation of Acetylene
    Yuan Zhang, Xun Sun, Yali Zhao, Huijuan Su, Toru Murayama, Caixia Qi*
    Topics in Catalysis64197-205 (2021)
  129. Gold Nanoparticles Supported on Ce–Zr Oxides for Selective Hydrogenation of Acetylene
    Xiaoyue Hua, Yuhua Zheng, Zixuan Yang, Libo Sun, Huijuan Su, Toru Murayama, Caixia Qi*
    Topics in Catalysis64206-214 (2021)
  130. Preparation of Polyaniline Microtubes as the Gold Catalyst Support with Improved Catalytic Performances for the Reduction of Nitrophenols
    Libo Sun, Lin Jiang, Jie Zhang, Toru Murayama, Miao Zhang, Yuhua Zheng, Huijuan Su, Caixia Qi*
    Topics in Catalysis64215-223 (2021)
  131. Influence of the Support in Aqueous Phase Oxidation of Ethanol on Gold/Metal Oxide Catalysts Studied by ATR-IR Spectroscopy under Working Conditions
    Ammara Waheed, Xianwei Wang, Nobutaka Maeda, Daniel.M. Meier, Tamao Ishida, Toru Murayama, Masatake Haruta, Alfons Baiker*
    Catalysis Communications148106183 (2021)
  132. Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water
    Yusuke Inomata, Hiroe Kubota, Shinichi Hata, Eiji Kiyonaga, Keiichiro Morita, Kazuhiro Yoshida, Norihito Sakaguchi, Takashi Toyao, Ken-ichi Shimizu, Satoshi Ishikawa, Wataru Ueda, Masatake Haruta, and Toru Murayama*
    Nature Communications12557 (2021) Editors' Highlights
    [Web Page]External Link
  133. CO2 Reduction to Methanol on Au/CeO2 Catalysts: Mechanistic Insights from Activation/Deactivation and SSITKA Measurements
    Azita Rezvani, Ali M. Abdel-Mageed, Tamao Ishida, Toru Murayama, Magdalena Parlinska-Wojtan, Jürgen R. Behm*
    ACS Catalysis103580-3594 (2020)
  134. Ligand Effect of Gold Colloid in the Preparation of Au/Nb2O5 for CO Oxidation
    Mingyue Lin, Chihiro Mochizuki, Baoxiang An, Tetsuo Honma, Masatake Haruta, Tamao Ishida, Toru Murayama*
    Journal of Catalysis3899-18 (2020)
  135. Features of Nb2O5 as a Metal Oxide Support of Pt and Pd Catalysts for Selective Catalytic Oxidation of NH3 with High N2 Selectivity
    Mingyue Lin, Baoxiang An, Takashi Takei, Tetsuya Shishido, Tamao Ishida, Masatake Haruta, Toru Murayama*
    Journal of Catalysis389366–374 (2020)
  136. Low-Temperature Propylene Epoxidation Activity of CuO-CeO2 Catalyst with CO + O2: Role of Metal-Support Interaction on the Reducibility and Catalytic Property of CuOx Species
    Tinku Baidya, Tanmoy Mazumder, Konstantin Koltunov, Pravin Likhar, Adam Clark, Khushbo Tiwari, Vladimir I. Sobolev, Soumitra Payra, Toru Murayama, Mingyue Lin, Parthasarathi Bera, Sounak Roy, Krishanu Biswas, Olga Safonova, Bolla Srinivasa Rao, Masatake Haruta
    The Journal of Physical Chemistry C124(26)14131–14146 (2020)
  137. Gold Nanoparticles Supported on Nb2O5 for Low-Temperature CO Oxidation and as Cathode Materials for Li-ion Batteries
    Luong X Dien*, Quang D Truong, Toru Murayama*, Huynh D Chinh, Ayako Taketoshi, Itaru Honma, Masatake Haruta, Tamao Ishida*
    Applied Catalysis A: General603117747 (2020)
  138. Elucidation of Active Sites of Gold Nanoparticles on Acidic Ta2O5 Supports for CO Oxidation
    Mingyue Lin, Chihiro Mochizuki, Baoxiang An, Yusuke Inomata, Tamao Ishida, Masatake Haruta, Toru Murayama*
    ACS Catalysis10(16)9328–9335 (2020)
  139. Importance of Size and Contact Structure of Gold Nanoparticles for Genesis of Unique Catalysis
    Tamao Ishida, Toru Murayama, Ayako Taketoshi, Masatake Haruta
    Chemical Reviews120464–525 (2020)
  140. Synthesis of zeolitic Mo-doped vanadotungstates and their catalytic activity for low-temperature NH3-SCR
    Meilin Tao, Satoshi Ishikawa, Toru Murayama, Yusuke Inomata, Akiho Kamiyama, Wataru Ueda*
    Inorganic Chemistry60(7)5081-5086 (2021)

Reviews

  1. Modern Alchemy to Turn Gold into Excellent Catalysts
    Masatake Haruta
    5th International Symposium on Atomic Level Characterization for New Materials and Devices ’05Big Island, Hawaii, USA, December 4-9, 2005: JSPS 141 Committee Activity Report17-22 (2006)
  2. Au NP-catalysed Propene Epoxidation by Dioxygen and Dihydrogen
    J. Kawahara, M. Haruta
    Nanoparticles and Catalysis, D. Astruc, Ed., Wiley-VCH WeinheimChapter 14, pp.457-473 (2008)
    [Web Page]External Link
  3. Relevance of Metal Nanoclusters Size Control in Gold(0) Catalytic Chemistry
    M. Haruta
    Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size ControlB.Corain,G. Schmid, N. Toshima Ed., Elsevier B. V, AmsterdamChapter 9, pp.183-199 (2008)
    [Web Page]External Link
  4. Epoxidation of Propylene with Hydrogen-Oxygen Mixtures, Mechanism in Homogeneous and Heterogeneous Epoxidation Catalysis
    M. Haruta, J. Kawahara
    S. T. Oyama ed., Elsevier B. V., AmsterdamChapter 10, pp.285-300 (2008)
    [Web Page]External Link
  5. Nanoparticulate Gold Catalysts
    M. Haruta
    Science of Metals and Semiconductor Nanoparticlesedited by Chemical Society of Japan, KAGAKUDOUJIN101-107 (2012)
    [Web Page]External Link
  6. Novel Catalysis by Gold: from Nanoparticles to Clusters
    M. Haruta
    Mol. Sci.6A0056 (2012)
    [Web Page]External Link
  7. Gas phase propene epoxidation over coinage metal catalysts
    J. Huang, M. Haruta
    Research on Chemical Intermediates381-24 (2012)
    [Web Page]External Link
  8. Heterogeneous catalysis by gold
    T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang, T. Ishida, M. Haruta
    Advances in Catalysis55B.C. Gates, F.C. Jentoft ed., ElsevierChapter 1, 1-124 (2012)
    [Web Page]External Link
  9. Technologies and Applications of Environmentally-friendly Ceramics
    T. Takei, M. Haruta
    M. Nogami ed., CMC Publishing, Tokyopp.207-220 (2007)
    [Web Page]External Link
  10. Particle Size and Support Effect on Noble Metal Catalysts
    M. Haruta
    Introduction to Nanotechnology Chemistry and MaterialsKyoritsu Shuppan, TokyoChapter 7, pp.85-102 (2007)
    [Web Page]External Link
  11. Exploitation and Market Development of Nanoparticulate Gold Catalyst Materials
    Y. Shimojo, M. Haruta
    Engineering Materials61 (12)50-54 (2013)
    [Web Page]External Link
  12. Unique Catalytic Performance of Supported Gold Nanoparticles in Oxidation0
    Y. Yu, J. Huang, T. Ishida, M. Haruta
    Modern Heterogeneous Oxidation Catalysis: Design, Reactions and CharacterizationN. Mizuno ed., WILEY-VCHChapter 3, pp.77-124 (2009)
    [Web Page]External Link
  13. Nanoparticulate Gold Catalysts
    Y. Shimojo, M. Haruta
    Modern Technology and Applications of Metal Nano-and Microparticles(T. Yonezawa Ed.), CMC Publishing Co. Ltd.Chapter 1.1 Application, 135-144 (2013)
    [Web Page]External Link
  14. Chance and necessity : my encounter with gold catalysts
    M. Haruta
    Angew. Chem. Int. Ed.5352-56 (2014)
    [Web Page]External Link
  15. Angewandte Author Profile
    M. Haruta
    Angew. Chem. Int. Ed.532-3 (2014)
    [Web Page]External Link
  16. Heterogeneous catalysis by Gold Clusters
    J. Huang, M. Haruta
    Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications1C. Li, Y. Liu eds., Wiley-VCH: Weinheim397-424 (2014)
  17. Size- and Structure-specificity in Catalysis by Gold Clusters
    A. Taketoshi, M. Haruta
    Chem. Lett.43(4)380-387 (2014)
    [Web Page]External Link
  18. New Findings in CO Oxidation (Chapter 1)
    Y. Shimojo, M. Haruta
    Gold Catalysis : Preparation, Characterization and Applications in the Gas and Liquid Phaseed. by Laura Prati, Albert Villa, Pan Stanford Publishing: Singapore, (2014) in press
  19. Role of Water in CO Oxidation on Gold Catalysts
    T. Fujitani, I. Nakamura, M. Haruta
    Catal. Lett.1441475-1486 (2014)
    [Web Page]External Link
  20. A Career in Catalysis: Masatake Haruta
    M. Okumura, T. Fujitani, J. Huang, T. Ishida
    ACS Catal.54699–4707 (2015)
    [Web Page]External Link
  21. New Findings in CO Oxidation
    Y. Shimojo, M. Haruta
    Gold Catalysis: Preparation, Characterization and ApplicationsL. Prati, A. Villa, Ed., Pan Stanford Publishingpp. 285–310 (2015)
  22. Synergetic Combination of an Enzyme and Nanoparticulate Gold Catalysts
    A. Taketoshi, M. Haruta
    Kagaku To Kogyo89336-340 (2015)
  23. Gold Catalysts ―from Nanoparticles to Clusters―
    A. Taketoshi
    Chemistry & Education6422-23 (2016)
  24. Gas Phase Propene Epoxidation with Oxygen
    M. Haruta, K. Imai
    CSJ Current Review 21, “New Aspects of Reactive Oxygen and Free Radicals”edited by Chemical Society of Japan, KAGAKUDOUJIN, (2016)
  25. C–H Functionalization by Supported Palladium and Gold Catalysts
    T. Ishida, M. Tokunaga
    Annual Survey of Catalytic Science and Technologies 2016,  in press
  26. Advances in Gold Catalysis and Understanding the Catalytic Mechanism
    1. T. Ishida, H. Koga, M. Okumura, M. Haruta
    Chem. Rec.162278–2293 (2016)
  27. Supported Gold Nanoparticles Leading to Green Chemistry
    T. Ishida, M. Haruta
    Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Research, and Environment Protectioned. by Bert F. Sels, M. van de Voorde, Wiley-VCH
  28. Gold Rush in 21st Century
    M. Haruta
    Vol.51, No.11Journal o the Vacuum Society of Japanpp.719-720 (2008)
    [Web Page]External Link
  29. Gold Rush in 21st Century: Gold Nanoparticles
    M. Haruta
    GOLD, National Museum of Nature and ScienceThe Mainichi Newpapers, NHK Promotion129-132 (2008)
  30. Novel Catalysis by Gold: A Modern Alchemy
    M. Haruta
    Vol.51, No.11Journal o the Vacuum Society of Japanpp.721-726 (2008)
    [Web Page]External Link
  31. Catalytic Action of Gold Nanoparticles. Air Purification and Green Chemistry
    M. Haruta
    Vol.64,No.1Kagakupp31-34 (2009)
  32. Gold Nanoparticles Catalysts for Air Purification and Green Chemistry
    T.Takei,M.Haruta
    22Materials Integration38-44 (2009)
  33. Development of Catalytic Performance by Minmizing Gold Particle Size
    M. Haruta
    44Ceramics Japan 2009pp.377-381 (2009)
  34. Gold does not cheat: Catalysis by Gold Founded by Hypothesis
    M. Haruta
    62Chemistry and Chemical Industry 2009pp.634-636 (2009)
  35. Gas-Phase Propylene Epoxidation over Gold Catalysts
    M. Haruta, J. Huang
    51Catalysts & Catalysis 2009pp.512-517 (2009)
  36. Motive Power of Chemistry Innovation is Catalysis
    M. Haruta
    53Catalysts and Catalysis63 (2011)
  37. Supported Gold Nanparticulate Catalysts on Metal Oxides
    T. Takei
    61Chemical Industry505-510 (2010)
    [Web Page]External Link
  38. Preparation of Supported Gold Nanparticulate and Their Applications
    T. Takei,T. Ishida, M. Haruta
    2Funtai Gijutsu44-51 (2010)
  39. Base Metal OxidesActive for Low Temperature CO Oxidation
    M. Haruta
    Vol.32 No.2J. Surf. Sci. Soc. Jpn.70-75 (2011)
    [Web Page]External Link
  40. I Basics, 1 Introduction of Catalysts
    M. Haruta
    Catalysis HandbookThe Catalysis Society of Japan3-10 (2008)
  41. What does it change by size?
    M. Haruta
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 1, 3-15 (2009)
    [Web Page]External Link
  42. Introduction of Deposition Technique for Gold Nanoparticles and Clusters
    M. Haruta
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 8, 107-115 (2009)
    [Web Page]External Link
  43. Applications of Gold Nanoparticles Catalysts into Environmental Conservation
    M. Haruta
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 25, 324-345 (2009)
    [Web Page]External Link
  44. Deposition of Au Nanoparticles onto Metal Oxides
    T. Takei
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 9, 116-126 (2009)
    [Web Page]External Link
  45. Deposition of Au Nanoparticles onto Carbons and Polymers
    T. Ishida
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 10, 127-134 (2009)
    [Web Page]External Link
  46. Support and Size Effect of Catalysis by Gold
    H. Ohashi
    Gold nanotechnology: Fundamentals and ApplicationsM. Haruta ed., CMC Publishing, TokyoChapter 17, 220-232 (2009)
    [Web Page]External Link
  47. Control of Structure and Properties of Silicas (Chapter 1)
    T. Takei
    Properties, Surface Modification and Dispersion Technology of Silica Particles and its ApplicationsGijyutujoho Kyoukai3-19 (2009)
    [Web Page]External Link
  48. Gold Nanoparticles Catalysts
    T. Ishida
    Chemistry of Coordination Space-Latest Technology and Applications(S. Kitagawa Ed.), CMC Publishing Co. Ltd.Chapter 5.1 Reaction, 198-205 (2009)
    [Web Page]External Link
  49. Preparattion of Porous Materials (Mesopore),Silica Gel
    T. Takei
    Encyclopedia of CeramicsAsakura365-369 (2009)
    [Web Page]External Link
  50. Fine Particles – Materials and Function (Chapter 4)
    T. Takei
    3rd edition Basic Princeples of Modern Colloid Science(The Chemical Society of Japan), Maruzen133-140 (2009)
    [Web Page]External Link
  51. Gold Nanoparticles bring a fresh sensitivity to the world of material science
    M. Haruta
    TMU-Beyond1Tokyo Metropolitan Univesity Liaison Office2 (2014)
    [Web Page]External Link
  52. Generation of Novel Catalytic Functions by Nanoparticulation of Gold
    A. Taketoshi, M. Haruta
    Bunseki Kagaku63(12)959-964 (2014)
    [Web Page]External Link

Patents

  1. T. Ishida, R. Makiyama, M. Haruta
    “Solid Polymer Material Carrying Noble Metal Particulate, Preparation Method thereof and Catalyst” JP2007-082287, Filing Date:Mar 27, 2007 Applied
    Applied, Tokyo Metropolitan University
  2. M. Haruta, Y. Yu, J. Huang, A. Taketoshi, T. Ishida, T. Akita, A. Ogata, H. Kim
    “Gold Cluster Catalysts and its Production Methods” JP2012-133329, Filing Date:Jun 12, 2012 Applied
    Applied, Tokyo Metropolitan University
  3. M. Haruta, S. Takenouchi, A. Taketoshi, T. Takei
    “Oxidation Catalysts and Production Methods for Organic Oxygenates” JP2012-194605, Filing Date:Sep 04, 2012 Applied
    Applied, Tokyo Metropolitan University
  4. A. Taketoshi, M. Haruta, S. Oe
    “Oxidation Catalysts” JP2011-264534, Filing Date:Dec 02, 2011 Applied
    Applied, Tokyo Metropolitan University
  5. M. Haruta, T. Ishida, I. Okuda, K. Kuroda, N. Kinoshita, J. Suenaga, Y. Yamaguchi
    “Method for Dispersing and Fixing Gold Fine Particle to Carrier, Gold Fine Particle-deposited Carrier Obtained Thereby, Catalyst and Colorant” JP2007-106198, Filing Date:Apr 13, 2007 Applied
    Applied, Tokyo Metropolitan University
  6. M. Haruta, T. Ishida, N. Kinoshita, K. Kuroda, H. Okatsu
    “Methods for depositing Au fine particles on support materials and the materials made by them” JP2008-067090, Filing Date:Mar 01, 2008 Applied
    Applied, Tokyo Metropolitan University
  7. H. Ohashi, M. Haruta, T. Takei, T. Ishida
    “Methods for depositing Au fine particles on support materials and the materials made by them” JP2008-091587, Filing Date:Mar 01, 2008 Applied
    Applied, Tokyo Metropolitan University
  8. T. Takei, J. Suenaga, K. Kuwano, H. Ohashi, T. Ishida, M. Haruta
    “Highly Active Catalysts and its Preparation” JP2008-179978, Filing Date:Jul 01, 2008 Applied
    Applied, Tokyo Metropolitan University
  9. Y. Iizuka, T. Tamai, T. Hayashi, I. Okuda, M. Haruta
    “Production of Cycloolefins and the Catalysts for these Selective Hydrogenations” JP2009-36389, Filing Date:Feb 01, 2009 Applied
    Applied, Tokyo Metropolitan University
  10. M. Haruta, J. Huang, T. Takei, T. Akita
    “Production of Propylene Oxide” JP2009-61683, Filing Date:Mar 01, 2009 Applied
    Applied, Tokyo Metropolitan University
  11. Y. Sasaki, Y. Asako, T. Ishida, M. Haruta
    “Production of Metal-coated Particles” JP2010-031057, Filing Date:Feb 16, 2010 Applied
    Applied, Nippon Shokubai Co. Ltd., Tokyo Metropolitan University
  12. T. Takei, N. Iguchi, M. Haruta
    “Gold Catalysts for Ethanol Oxidation and its Use for the Production of Acetaldehyde and Acetic Acid” JP2010-065746, Filing Date:Mar 23, 2010 Applied
    Applied, Tokyo Metropolitan University
  13. M. Haruta, T. Takei, N. Fujita
    “Catalysts for Catalytic Combustion and Decomposition Method of Ethylene” JP2010-206130, Filing Date:Sep 14, 2010 Applied
    Applied, Tokyo Metropolitan University
  14. T. Ishida, M. Haruta, H. Watanabe
    “Highly Active Base Metal Oxide Catalysts for Selective Oxidaion Reactions” JP2010-206129, Filing Date:Sep 14, 2010 Applied
    Applied, Tokyo Metropolitan University
  15. M. Ikegami, T. Matsumoto, T. Nkayama, A. Ogata, K. Kim, M. Haruta, T. Takei
    “Gas Purification Methods and its Apparatus using Low Temperature Plasma and Catalytic Filter” JP2010-206073, Filing Date:Sep 14, 2010 Applied
    Applied, NBC Meshteck, AIST, Tokyo Metropolitan University
  16. E. Kiyonaga, K. Hikino, K. Morita, M. Haruta, T. Murayama, M. Mino
    “Thermal power system” JP6077190, Jan 20, 2017 Registered
    Applied, The Chugoku Electric Power Co., Tokyo Metropolitan University
  17. M. Haruta, T. Ishida, D. X. Luong,
    “Producation of gold composite materials” JP2017-042768, Filing Date:Mar 07, 2017 Applied
    Applied, Tokyo Metropolitan University

Invited lectures

  1. Catalysis by Gold: Nanoparticles and Clusters for Green Sustainable Chemistry
    Masatake HARUTA
    International Symposium on Small Particles and Clusters, Gotenburg, Sweden, 2006.07.01 (Plenary)
  2. Modern Alchemy: Catalysis by Gold Nano-particles
    Masatake HARUTA
    PIRE-ECCI/ICMR Summer Conference, University of California, Santa Barbara, USA, 2006.08.01 (Invited)
  3. Active Sites in Heterogeneous Catalysis by Gold
    M. Haruta
    5th Xiamen Workshop on Surface Science: China-Japan Symposium on Selective Oxidation Catalysis, Xiamen, China, 2007.04.22
  4. Size and Support Effect in the Catalysis by Gold Nanoparticles
    M. Haruta
    16th International Symposium on Rectivity of Solids, Minneapolis, USA, 2007.06.03 (Plenary)
  5. Active Sites in the Catalysis by Gold
    M. Haruta
    25th Taiwanese Catalysis and Reaction Engineering Conference, Tatung University, Taipei, Taiwan, 2007.07.06 (Plenary)
  6. Size and Support Effect in the Catalysis by Gold
    M. Haruta
    Seminar at National Taiwan University, Taipei, Taiwan, 2007.07.07
  7. Green Sustainable Chemistry through Gold Catalysts
    M. Haruta
    Seminar at National Cheng Kung University, Tainan, Taiwan, 2007.07.09
  8. Gas Phase Propylene Epoxidation over Gold Nanoparticles Deposited on Mesoporous Titanium Silicates (Keynote Lecture)
    M. Haruta
    The 234th ACS National Meeting, Boston, USA, 2007.08.19
  9. Deposition of Gold Clusters onto Macromolecular Complexes and Their Catalytic Performances
    M. Haruta
    12th IUPAC International Symposium on MacroMolecular Complexes (MMC-12), Fukuoka, Japan, 2007.08.30
  10. Structure of Nanoparticulate Gold Catalysts Observed with a TEM
    M. Haruta, T. Akita
    20th Catalysis Research Center International Symposium, In-situ Characterization of Catalysts-Presence and Future Aspects, Sapporo, Japan, 2007.09.21
  11. Catalytically Active States of Gold
    M. Haruta
    3rd China-Japan Workshop on Environmental Catalysis and Eco-Materials, Tsinghua University, Beijing, China, 2007.10.12
  12. Purification of Air in the Urban Environment by Nanoparticulate Gold Catalysts, ISSUE 2007
    M. Haruta
    International Symposium on Sustainable Urban Enviroment 2007, Tokyo Metropolitan University, Japan, 2007.11.09
  13. Catalysis of Gold Clusters Fixed in the Nanosapce of Metal Complex
    M. Haruta
    3rd International Symposium on Chemistry of Coordination Space (ISCCS), Hyogo, Japan, 2007.12.11
  14. Deposition of Gold Clusters onto Macromolecular Complexes and Their Catalytic Performances
    M. Haruta
    169th ICYS (International Center for Young Scientists) Special Seminar, National Institute for Materials Science, Tsukuba, Japan, 2007.12.14 (Invited)
  15. Supported Gold Nanoparticles as a Key Catalyst for Green Sustainable Chemistry
    M. Haruta
    1st Singapore Catalysis Forum, Inst. Chem. Eng. Sci., Singapore, 2008.04.01
  16. Direct Deposition of Gold Nanoparticles onto Carbons and Polymers for Selective Catalysis in Liquid Phase
    M. Haruta
    14th International Congress on Catalysis (ICC) Pre-Symposium, Kyoto, Japan, 2008.07.01
  17. Gold Catalysts Leading to Green Sustainable Chemistry
    M. Haruta
    2nd STINT/SNU Summer School, Seoul, Korea, 2008.07.01
  18. From Gold to Green: Catalysis by Clusters
    M. Haruta
    Spain-Japan Joint Workshop on“Nanoscience and New Materials”, Tokyo, 2009.04.01 (Invited)
  19. Novel Catalysis by Gold Clusters
    M. Haruta
    4th Taylor Conference on Catalysis”, Cardiff, UK, 2009.07.01 (Plenary)
  20. Chemical Innovation by Gold Catalysts
    M. Haruta
    5th International Conference on Gold Science, Technology and Its Applications (GOLD2009), Heidelberg, Germany, 2009.07.01 (Plenary)
  21. Simple Chemistry Catalyzed by Gold Clusters
    M. Haruta
    4th International Conference on Green and Sustainable Chemistry (GSC-4) & 2nd Asian-Oceanian Conference on Green and Sustainable Chemistry (AOC-2), Beijing, China, 2009.08.01 (Invited)
  22. Preparation of Gold Catalysts
    M. Haruta
    Workshop on Au Catalysis & Its Industrial Application, Yantai, China, 2009.08.01
  23. Selective Oxidation and Hydrogenation by Supported Gold Catalysts
    M. Haruta
    The Inauguration of KAUST Catalysis Center (KCC), The KCC symposium on Catalysis, Jedda, Saudi Arabia, 2010.12.08
  24. Novel Chemistry by Nanoparticles and Clusters
    M. Haruta
    Chemistry Seminar, Université Bordeaux I, 2010.11.22
  25. Green Chemistry by Supported Gold Catalysts
    M. Haruta
    9th Japan-FranceWorkshop on Nanomaterials, Toulose, France, 2010.10.25
  26. Green Chemistry Catalyzed by Gold Clusters
    M. Haruta
    54thWelch Conference, Houston, USA, 2010.10.25
  27. Unique Catalysis by Gold Nanoparticles Deposited on Base Metal Oxides
    M. Haruta
    International Conference on Nanoscopic Colloid and Surface Science, Chiba, Japan, 2010.09.21
  28. Selective Oxidation and Hydrogenation of Biomass Derived Alcohols over Gold Catalysts
    M. Haruta
    6th Tokyo Conference on Catalytic Science and Technology & 5th Asia Pacific Congress on Catalysis (TOCAT6/APCAT5), Sapporo, Japan, 2010.07.12
  29. Novel Catalysis by Gold Clusters Leading to Green Chemistry
    M. Haruta
    Inaugural International Conf. on Molecular & Functional Catalysis(ICMF-1), Singapore, 2010.07.12
  30. Novel Catalysis by Supported Gold Clusters
    M. Haruta
    FUNDACION ARECES, Valencia, Spain, 2010.05.25
  31. Current and Future Applications of Gold Catalysts
    M. Haruta
    Workshop for the Opening of Yantai Gold Nanotechonogy Research Center, Yantai University, China, 2011.04.19
  32. Catalysis by Gold Clusters Leading to Green Chemistry
    M. Haruta
    Seminar for Celebration of 100th Anniversary of Tsinghua University, Tsinghua University, China, 2011.04.21
  33. Preparation of Supported Gold Clusters for Green Chemistry
    M. Haruta
    Colloids Materials 2011, Amsterdam, 2011.05.10
  34. Novel Catalysis by Supported Gold Clusters
    M. Haruta
    Seminar at Universite Catholique de Louvain, Louvain-la Neuve, 2011.05.13
  35. Catalytic Performance and Atomic Structure of Supported Gold Nanoparticles
    M. Haruta
    ALC'11, Seoul Olympic Parktel, 2011.05.22
  36. Nano-structures of Active Gold Catalysts
    M. Haruta
    13th Korea-Japan Symposium on Catalysis, Jeju Islands, Korea, 2011.05.25
  37. The Role of Perimeter Interfaces in the Catalysis by Supported Gold Nanoparticles
    M. Haruta
    Faraday Discussion 152: Gold, Cardiff University, UK, 2011.07.04
  38. Catalysis by Gold Nanoparticles Leading to Green Chemistry
    M. Haruta
    Seminar at Liverpool University, 2011.07.07
  39. Novel Catalysis by Gold Clusters Leading to Green Chemistry
    M. Haruta
    Gordon Conference, Mount Holyoke College, South Hadley, USA, 2011.07.24
  40. Stability and Catalytic Activity of Gold Nanoparticles Supported on Base Metal Oxides
    M. Haruta
    6th International & 8th Japan-China Joint Symposium on Calorimetry and Thermal Analysis, CATS2011, Tokyo Metroplitan University, 2011.08.02
  41. Gold Catalysts for Green Chemistry and Efficient Energy Conversion
    M. Haruta
    Workshop, Universtity of Castilla-La Mancha, 2011.09.15
  42. Supported Gold Nanoparticles Leading to Green Chemistry
    M. Haruta
    Composite Lake Louise, Canada, 2011.11.02
  43. Propene epoxidation over gold nanoparticules and clusters deposited on TS-1
    M. Haruta
    Evonik Meets Science, 2011.11.16
  44. Role of Perimeter Interfaces and Water in Catalysis by Gold Nanoparticles
    M. Haruta
    141 Workshop, Tokyo, 2011.11.19
  45. Simple Chemistry Catalyzed by Supported Gold Nanoparticles
    M. Haruta
    Catalysis for Fine Chemicals, Nara, 2011.12.08
  46. The role of perimeter interfaces in the genesis of catalysis by gold nanoparticles
    M. Haruta
    AMTC3 (Third International Symposium on Advanced Microscopy and Theoretical Calculations), Nagara-gawa Convention Center, Gifu, 2012.05.10
  47. Catalysis by gold nanoparticles and clusters leading to green chemistry
    M. Haruta
    2nd International Conference on Molecular and Functional Catalysis, Singapore, 2012.07.30
  48. Introductory talk for JST session
    M. Haruta
    The 6th International Conference on Gold Science, Technology, and its Applications (GOLD2012), Keio Plaza Hotel Tokyo, Tokyo, 2012.09.08
  49. Catalysis by gold clusters leading to simple chemistry
    M. Harura
    1st International Conference of NanoSquare, Osaka Prefecture University, 2013.02.04
  50. Bright future of gold catalysis research
    M. Haruta
    Academic Committie, Dalian Institute of Chemical Physics, China, 2013.03.28
  51. Novel Catalysis by Gold Nanoparticles: Support and Size Effect
    M. Haruta
    Young Coordination Chemist’s Summer School, Hakone, 2007.08.01
  52. Novel Catalysis by Gold Nanoparticles
    M. Haruta
    The 68th SCI-TECH Salon, Komaba Fucalty House, Tokyo, 2013.08.24
  53. Novel Catalysis by Gold: From Nanoparticles to Clusters
    M. Haruta
    The 7th Annual Meeting of Japan Society for Molecular Science, Kyoto TERRSA, Kyoto, 2013.09.24
  54. Modern Alchemy: Nanotechnology of Gold
    M. Haruta
    2013 Fall Meeting of Midorikai Tokyo Branch and General Meeting/Special Lectures of Nagoya Kougyoukai Tokyo Branch, Nakano SUNPLAZA, Tokyo, 2013.11.09
  55. When Gold is not Noble: Catalysis by Nanoparticles
    M. Haruta
    Tokyo Metropolitan University Special Lecture, TMU Auditorium, 2013.11.20
  56. Fine Structure and Unique Catalysis of Gold Nanoparticles
    M. Haruta
    JEOL The 34th R&D Executive Mixer, Imperial Hotel Tokyo, 2013.11.22
  57. Making Real Gold Nanoparticle Catalysts in Practical Use
    M. Haruta
    2013 AIST OB Association Lectures–The Road to Novel Prize–, AIST Kansai Center, Osaka, 2013.12.09
  58. Novel Catalysis of Gold Nanoparticles: Mechanisms and Future Applications
    M. Haruta
    The 3rd Symposium of JST-CREST (Basic technology of nano-interface), Akiba Hall, Tokyo, Japan, 2013.12.17
  59. Gold Nanoparticles Pioneers Simple Chemistry
    M. Haruta
    The 8th Public Lectures in Division of Nanoparticle/StructureApplication, The Society of Non-Tranditional Technology, –Novel Preparation Technique, Structure, and its Application of Nanoparticles–, The Chemical Society of Japan, Chemistry Hall, Tokyo, 2014.03.04
  60. Simple Chemistry by Gold Nanoparticle Catalysts
    M. Haruta
    The 4th Symposium of Green Chemistry, Cooperative Education and Research Center for Green Chemistry and Faculty of Science, Niigata University, Niigata, 2014.03.18
  61. Synergetic Combination of Enzyme and Gold Catalysts for Glucase Oxidation in Neutral Solution
    M. Haruta
    BIT's 4th Annual Global Congress of Catalysis 2013, Dalian World EXPOCenter, China, 2013.07.01
  62. Randomness & Nessecity : My Encounter with Gold Catalysis
    M. Haruta
    Zhang Dayu Lecture, Dalian Institute of Chemical Physics, 2013.09.26
  63. Simple Chemistry by Gold Nanoparticle Catalysts
    M. Haruta
    24th Banyu Fukuoka Symposium, Centennial hall Kyushu University School of Medicine, 2014.06.09
  64. Coincidence and Necessity: Encounter with Gold
    M. Haruta
    2015 Alumni eventof Tokyo Metropolitan University, Tokyo Metropolitan University International House, 2014.11.08
  65. Catalysis and Application of Gold Nanoparticles: What do we need to know and measure from now on?
    M. Haruta
    Science Council of Japan Public Lecture, ”Innovation Opened by Nanomaterials and Nanosensing”, Science Council of Japan Lecture Hall, 2014.12.18
  66. Heterogeneous catalysis by gold nanoparticles leading to green chemistry
    M. Haruta
    Université Catholique de Louvain, Belgium, Doctor Honoris Causa, 2014.05.27
  67. Novel catalysis by gold clusters
    M. Haruta
    The 3rd Frontier Chemistry Center International Symposium” Challenges at the Frontier of Chemical Sciences”, Hokkaido University, 2014.06.13
  68. Selective oxidation of ethanol with molecular oxygen on supported gold nanoparticles
    M. Haruta
    248th American Chemical Sciety National Meeting & Exposition, San Francisco Moscone Center, 2014.08.11
  69. Gold catalysts for simple chemistry
    M. Haruta
    Taishan Academic Forum, Yantai University, 2014.09.23
  70. CO oxidation on supported gold nanoparticles
    M. Haruta
    CRC-SU Joint International Symposium on Chemical Theory for Complex Systems, Stockholm University, 2014.10.30
  71. Gold-Catalyzed Selective Oxidation in Liquid Phase
    T. Ishida
    Kick-Off Workshop for Research Center for Gold Chemistry, Tokyo Metropolitan University, 2014.05.15
  72. Novel Catalysis by Supported Gold Nanoparticles
    M. Haruta
    Nanqiang Lecture, Xiamen University, P. R. China, 2015.04.20
  73. Simple Chemistry Catalyzed by Gold Nanoparticles
    M. Haruta
    The 7th International Conference on Gold Science, Technology and its Applications (GOLD2015), Cardiff City Hall, UK, 2015.07.26 (Plenary)
  74. Unique Catalysis of Gold Nanoparticles
    M. Haruta
    Kagoshima University Project Gold 2015 Symposium, Kagoshima University, 2016.02.12
  75. What I Had Learned at Nagoya Gakuin: Dreams Expanded to the World
    M. Haruta
    Seminar of Nagoya Gakuin Mumei-kai, Aichi, Japan, 2013.03.15
  76. A Modern Alchemy: Gold Nanotechnology
    M. Haruta
    NBC Meshtec Inc. Annual Meeting, NBC Meshtec Inc., Tokyo, Japan, 2013.03.14
  77. Fascinated by Gold: Randomness and Necessity
    M. Haruta
    “Career Guidance Day” The 1st Part, Career Guidance, Nagoya Senior High School, Aichi, Japan, 2012.12.15
  78. Researchers are Dreamers
    M. Haruta
    “Career Guidance Day” The 2nd Part, Individual Course, Nagoya Senior High School, Aichi, Japan, 2012.12.15
  79. Gold Catalysis and Applications to Green Chemistry
    M. Haruta
    he Catalysis Society of Japan (CATSJ), Lecture Meeting in Tsukuba area, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 1, Ibaraki, Japan, 2012.12.14
  80. Nanotechnology which Expand Applications of Gold — Great Potential of Gold —
    M. Haruta
    WGC 1st Gold Academy, Mandarin Oriental Tokyo, Tokyo, Japan, 2012.11.29
  81. Preparation Methods and Catalytic Properties of Gold Nanoparticles
    M. Haruta
    17th Symposium “Synthetic Processes for Noble Metal Films and Particles”, Nippon Institute of Technology Kanda Campus, Tokyo, Japan, 2012.11.21
  82. Novel Catalysis by Supported Gold Clusters: from Nanoparticles to Clusters
    M. Haruta
    9th Catalysis Seminar by Sagami Chemical Research Institute, Tosoh Tokyo Research Center, Kanagawa, Japan, 2012.11.16
  83. Causes and Counter Measures for the Deactivation of Gold Catalysts Active at Ambient Temperature
    M. Haruta
    6th Seminar of Catalyst Deactivation, Campus Innovation Center Tokyo, Tokyo, Japan, 2012.11.15
  84. Highly Selective Reaction Catalyzed by Supported Gold Clusters Composed of Defined Number of Atoms
    M. Haruta
    JST New Technology Presentation Meeting, Ichigaya, Tokyo, Japan, 2012.07.06
  85. Generation of the Novel Catalysis by Gold Clusters
    M. Haruta
    The Memorial Symposium on the Establishment of Center for Exploration of New Inorganic Materials, Tohoku University, Miyagi, Japan, 2012.07.03
  86. Novel Catalysis by Supported Gold Clusters
    M. Haruta
    1st JACI/GSC Symposium, Bellesalle Kanda, Tokyo, Japan, 2012.06.13
  87. Aerobic oxidation of sulfides to sulfoxides over manganese oxides prepared by different methods
    A. Taketoshi, M. Haruta
    Asian International Symposium on the 92nd Chemical Society of Japan (CSJ) Annual Meeting, Keio University, Japan, 2012.03.27
  88. Green Chemistry by Gold Cluster Catalysts
    M. Haruta
    Catalyst Club, Osaka, Japan, 2012.01.27
  89. The Role of Water and Perimeter in Catalytic Activity of Gold Nanoparticles
    M. Haruta
    JST-CREST Meeting, Ichigaya, Japan, 2012.01.25
  90. Mystery of Catalysts
    M. Haruta
    Community Salon of Education-Industry, Chuo Universiy, Japan, 2011.12.09
  91. Green Chemistry by Gold Cluster Catalysts
    M. Haruta
    The Meeting of JST-CREST (Basic technology of nano-interface), Tokyo, Japan, 2011.10.25
  92. Application and Interesting Catalytic Activity of Gold Nanoparticles
    M. Haruta
    Seminar of Catalytic Technology, Osaka University, Japan, 2011.10.21
  93. The Role of Water and Perimeter in Catalytic Activity of Gold Nanoparticles
    M. Haruta
    The 32nd summer meeting of the Catalysis Society of Japan, Hmamatsu, Japan, 2011.08.08
  94. Surface Phenomena on Solids -Adsorption and Surface Structure of Solids-
    T. Takei
    The 27th Basic Lecture of Modern Colloid and Interface Chemistry, Tokyo, Japan, 2011.05.19
  95. New Catalysis by Gold
    M. Haruta
    Tokyo U-Club Regular Meeting, Tokyo Metropolitan University, Akihabara, 2010.12.03
  96. Gold Catalysts for Ethanol Oxidation to ProduceAcetaldehyde and Acetic Acid
    M. Haruta
    JST New Technology Presentation Meetings, JST Hall, Tokyo, 2010.06.25
  97. Catalysis by Gold Nanoclusters: From Fundamentals to Industrial Applications
    M. Haruta
    The University of Tokyo, “Frontier Chemistry”, Tokyo, 2010.06.14
  98. Interests in Gold:Wide Variety of Catalytic Properties
    M. Haruta
    100th The Society of Graphite Compounds Meeting,Kyoto, 2010.05.20
  99. New Properties of Gold Clusters
    M. Haruta
    The Japan Society for Promotion of Science, The 141th Committee Lecture, Kyoto, 2010.05.19
  100. Catalysis of Gold: NanoWonderland
    M. Haruta
    Keio University Special Lecture, Tokyo, 2010.04.17
  101. Catalysis by Gold Clusters
    M. Haruta
    The 48th Memorial Symosium of Prof. Tamaki, Kyoto University, 2009.10.01
  102. Mechanism for Catalysis by Supported Gold Nanoparticles
    M. Haruta
    Fuel Cell Related Catalyst Division in Catalyst Society of Japan, The second symposium for New Electrode Catalysts, Kato Foundation for Promotion of Science, Nagano, 2009.10.01
  103. New Catalysis by Gold Clusters
    M. Haruta
    The 34th Annual Meeting of the Society for Atomic Collision Research, Tokyo Metropolitan University, 2009.08.01
  104. Catalysis by Gold for Green Chemistry
    M. Haruta
    Catalysis Colloquium, Sophia University, Tokyo, 2009.06.01
  105. Catalysis by Gold Nanoparticles for Environmentaly Benign Chemistry
    T. Ishida, M. Haruta
    Tokyo Metropolitan Industrial Technology Research Institute, 2009.06.01
  106. Physical Chemistry of Solid Surfaces and Nanoporous Materials
    T. Takei
    25th Fundamental Lecture of Modern Colloid and Interface Science”, Division of Colloid and Interface Science, The Chemical Society of Japan, 2009.05.01
  107. Deposition of Gold Nanoparticles onto Various Kinds of Support Materials
    M. Haruta
    TMU Research Seeds Meetings 2008, Tokyo, 2008.11.01
  108. Catalysis by Gold: Wonder of Nano-World
    M. Haruta
    The Institution of Professional Engineers Japan, Nagoya, 2008.11.01
  109. Deposition of Gold Nanoparticles and its Application to Catalysts
    M. Haruta
    Kanagawa Industial Technology Center, Kangawawa, 2008.10.01
  110. Air Purification by Gold Catalyst
    T. Takei
    Sangaku Renkei Plaza 2008, Lumieru Fuchu, 2008.10.01
  111. Deposition of Gold Clusters and its Application to Catalysts and Sensors
    M. Haruta
    The Ceramic Society of Japan, Fukuoka, 2008.09.01
  112. Support and Size Effect of Gold Catalysts on Selective Oxidations
    M. Haruta
    The 102nd Meetings on the Catalysis Society of Japan, Nagoya, 2008.09.01
  113. Support Effect of Ceramics for Gold Nanoparticles Catalysts
    M. Haruta
    JSPS, Tokyo, 2008.09.01
  114. Deposition of Gold Nanoparticles onto Polymer Surfaces
    M. Haruta
    TMU/JST New Technology Presentation Meetings, Tokyo, 2008.07.01
  115. Direct Deposition of Gold Nanoparticles onto Polymers and Carbons-Application to Catalysts
    M. Haruta
    JST New Technology Presentation Meetings, Tokyo, 2008.06.01
  116. Principles of Catalysis and Structures for Gold Nanoparticles
    M. Haruta
    The Japanese Society of Microscopy, Kyoto, 2008.05.01
  117. Size Effect and Catalysis of Nanoparticles
    M. Haruta
    The 88th Spring Meeting on The Chemical Society of Japan, Rikkyo University, 2008.03.01
  118. Green Sustainable Chemistry:Approaches from Solvents and Catalysts
    M. Haruta
    The 88th Spring Meeting on The Chemical Society of Japan, Rikkyo University, 2008.03.01
  119. Direct Deposition of Gold Nanoparticles onto Polymer Supports and Their Catalytic Properties
    T. Ishida
    The Kyushu University FR・AS Symposium, Kyushu University, 2008.03.01
  120. Modern Alchemy: Nanoparticulate Gold Catalysts
    M. Haruta
    Owari Tono Monozukuri Sangakukan Network The 4th Seminar, 2008.01.01
  121. Catalysis by Gold !, Lecture Series” Enjoy to know”,-Watch Research Frontiers
    M. Haruta
    Komaba Senior High School at Otsuka, University of Tsukuba, 2007.12.01
  122. Air Purification and Green Chemistry by Nanoparticulate Gold Catalysts
    M. Haruta
    Fiber Science and Technology Kanto Division Lecture, Tokyo Institute of Technology, 2007.12.01
  123. Modern Alchemy:Creation of Catalysis from Gold
    M. Haruta
    Nanoparticles, Special Lecture in Ritsumeikan University, Kusatsu Biwako Campus Ritsumeikan University, 2007.11.01
  124. Modern Alchemy: A New World Created by Gold Nanoparticles
    M. Haruta
    Kinki University, Faculty of Industrial Science and Technology Academic Lecture, Iizuka, 2007.11.01
  125. Modern Alchemy: Gold Nanoparticles and Clusters
    M. Haruta
    Japan Vacuum Society & Surface Science Society of Japan Seminar, Kobe University, 2007.07.01 (Plenary)
  126. New applications of nanoparticulate gold catalysts using solid acid support
    Toru Murayama
    ICAT International Joint Symposium in Cardiff, 2019.01.17
  127. Temperature-Dependent Activation Properties for Carbon Monoxide Oxidation by Polyoxometalate-Supported Gold Nanoparticulate Catalysts
    Toru Murayama*, Takuya Yoshida, Mingyue Lin, Norihito Sakaguchi, Tamao Ishida, Masatake Haruta
    The 8th Tokyo Conference on Advanced Catalytic Science and Technology (TOCAT8), 2018.08.05
  128. Preparation and Catalytic Porperties of Supported Gold Nanoparticles and Clusters
    Tamao Ishida
    Singapore-Japan Bilateral Meeting on Functional Materials Chemistry, 2018.04.26
  129. Heterogeneous Gold Nanoparticles as Soft Lewis Acid Catalysts for Transfer Vinylation of Carboxylic Acids
    Tamao Ishida
    Intenational Symposium on Catalysis and Fine Chemicals (C&FC) 2018, 2018.12.13
  130. DNA nanoplate-based functional microdroplets furnished with ion-channel function
    Daisuke Ishikawa
    ICPAC Langkawi 2018 (International Congress on Pure & Applied Chemistry), 2018.10.31

Abstracts of Selected Articles

Books, Reviews, Accounts

1)
Heterogeneous catalysis by gold
T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang, T. Ishida, M. Haruta
Advances in Catalysis55B.C. Gates, F.C. Jentoft ed., ElsevierChapter 1, 1-124 (2012)
[Web Page]External Link
Image:Heterogeneous catalysis by gold

This chapter is a review of recent advances in heterogeneous catalysis by gold, focusing on the advances in the latest 10 years; Preparation of Supported Gold Catalysts, Fine Structures of Supported Gold Catalysts, Surface Science of CO Oxidation Catalyzed by Gold, Theoretical Interpretations and Predictions of Catalysis by Gold, Catalysis by Gold with Reactants in the Gas Phase, Catalysis by Gold with Reactants in the Liquid Phase.

2)
Role of perimeter interfaces in catalysis by gold nanoparticles
M. Haruta
Faraday Discuss.15211-32 (2011)
[Web Page]External Link
Image:Role of perimeter interfaces in catalysis by gold nanoparticles

This review was compiled based on the Introductory Talk of Faraday Discussion 152: Gold (at Cardiff University, on July 2011).

Gold can be deposited as nanoparticles (NPs) of 2 to 5 nm in diameter on a variety of materials such as metal oxides and carbides, carbons, organic polymers and exhibits surprisingly high catalytic activities for many reactions in both gas and liquid phases. The mechanisms for the genesis of catalysis by gold NPs is discussed based on real powder catalysts and model single crystal catalysts for two simple reactions, low-temperature oxidation of CO in which gold NPs catalysts are exceptionally active and for dihydrogen dissociation in which gold NPs catalysts are still poorly active. For both the two reactions, it has been revealed that reactions take place at perimeter interfaces around gold NPs.

Original Papers

1)
Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions
H. Yoshida, Y. Kuwauchi, J. R. Jinschek, K. Sun, S. Tanaka. M. Kohyama, S.Shimada, M. Haruta, S. Takeda
Science335317-319 (2012)
[Web Page]External Link

Understanding how molecules can restructure the surfaces of heterogeneous catalysts under reaction conditions requires methods that can visualize atoms in real space and time. We applied a newly developed aberration-corrected environmental transmission electron microscopy to show that adsorbed carbon monoxide (CO) molecules caused the {100} facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature. The CO molecules adsorbed at the on-top sites of gold atoms in the reconstructed surface, and the energetic favorability of this reconstructed structure was confirmed by ab initio calculations and image simulations. This atomic-scale visualizing method can be applied to help elucidate reaction mechanisms in heterogeneous catalysis.

2)
Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods
X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen
Nature458746-749 (2009)
[Web Page]External Link

The development of active and stable catalysts without noble metals for low-temperature CO oxidation under an ambient atmosphere remains a significant challenge. Here we report that tricobalt tetraoxide nanorods not only catalyse CO oxidation at temperatures as low as –77 °C but also remain stable in a moist stream of normal feed gas. High-resolution transmission electron microscopy demonstrates that the Co3O4 nanorods predominantly expose their {110} planes, favouring the presence of active Co3+ species at the surface. Kinetic analyses reveal that the turnover frequency associated with individual Co3+ sites on the nanorods is similar to that of the conventional nanoparticles of this material, indicating that the significantly higher reaction rate that we have obtained with a nanorod morphology is probably due to the surface richness of active Co3+ sites. These results show the importance of morphology control in the preparation of base transition-metal oxides as highly efficient oxidation catalysts.

3)
Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters
J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta
Angew. Chem. Int. Ed.487862-7866 (2009) marked as “Hot Paper”
[Web Page]External Link

Size matters: Gold clusters (<2.0 nm), but not gold nanoparticles, deposited on alkali-treated titanosilicalite-1 enable O2 and H2O to react to give hydroperoxides (-OOH). This species transfers to neighboring Ti sites to form Ti-OOH, which is capable of propene epoxidation with molecular oxygen alone to give propene epoxide (PO).

4)
Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols
T. Ishida, M. Nagaoka, T. Akita, M. Haruta
Chem. Eur. J.148456-8460 (2008)
[Web Page]External Link

Gold clusters were deposited in a narrow size distribution on porous coordination polymers (PCPs) by solid grinding with volatile dimethyl AuIII acetylactonate. The mean diameter could be minimized down to 1.5 nm for Al-containing PCPs. Gold clusters on PCPs showed noticeably high catalytic activity in the aerobic oxidation of alcohols. Product selectivity was tunable by the selection of PCP supports in benzyl alcohol oxidation.

5)
Vital Role of Moisture in the Catalysis of Supported Gold Nanoparticles
M. Daté, M. Okumura, S. Tsubota, M. Haruta
Angew. Chem. Int. Ed.432129-2132 (2004) marked as “Very Important Paper”
[Web Page]External Link

Supported gold nanoparticles exhibit high catalytic activity not only at low temperatures but also under the presence of moisture. The effect of moisture on CO oxidation over Au/TiO2, Au/Al2O3, and Au/SiO2 was studied at 273 K. It was found that the catalytic activities are enhanced by moisture by up to two orders of magnitude, and that the moisture effect depends on the type of oxide support.

6)
Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3 and Co3O4
M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon
J. Catal.144175-192 (1993)
[Web Page]External Link

Gold can be highly dispersed on a variety of metal oxides by coprecipitation and deposition-precipitation followed by calcination in air. Such supported gold differs in catalytic nature from unsupported gold particles and exhibits high catalytic activities for low-temperature oxidation of CO. In the temperature range of −10 to 65°C, the activation energies for CO oxidation were 8.2 kcal/mol (Au/TiO2), 8.4 kcal/mol (Au/α-Fe2O3), and 3.9 kcal/mol (Au/Co3O4). The rate of CO oxidation is zero order with respect to CO for the three catalysts, and 0.2-0.3 for Au/TiO2 and Au/Co3O4 and zero order for Au/α-Fe2O3 with respect to O2. By taking into consideration TPD and FT-IR data, a mechanism is proposed in which CO adsorbed on gold particles migrates toward the perimeter on support oxides and there it reacts with adsorbed oxygen to form bidentate carbonate species. The decomposition of the carbonate intermediate is considered to be rate-determining.

7)
Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0℃
M. Haruta, T. Kobayashi, H. Sano, N. Yamada
Chem. Lett.405-408 (1987)
[Web Page]External Link

A variety of gold catalysts can be used to catalyze the oxidation of carbon monoxide at temperatures as low as −70 °C and are stable in a moistened gas atmosphere. The novel catalysts, prepared by coprecipitation, are composed of ultra-fine gold particles and one of the oxides of 3d transition metals of group VIII, namely, Fe, Co, and Ni.