To Page Top
ここからページコンテンツが開始します

村山 徹

村山 徹 氏 名 村山 徹 (Toru MURAYAMA)
職 位特任教授
所 属首都大学東京 都市環境学部 分子応用化学コース
首都大学東京大学院 都市環境科学研究科 分子応用化学域
専門・研究分野

触媒化学

最終学歴・学位 東京工業大学大学院 理工学研究科 応用化学専攻 (博士)
研究テーマ

金触媒の調製および触媒反応

研究キーワード

金, ナノ粒子, 金属酸化物, 環境調和型プロセス

研究業績・著書・
論文、その他
それに準じる業績

(査読付論文)

2016

48. Toru Murayama, Kiyotaka Nakajima, Jun Hirata, Kaori Omata, Emiel J. M. Hensen and Wataru Ueda, ‘Hydrothermal Synthesis of a Layered-type W-Ti-O Mixed Metal Oxide and its Solid Acid Activity’, Catalysis Science & Technology, 2016, DOI: 10.1039/C6CY02198K

47. Sitoshi Ishikawa, Daniel Jones, Sarwat Iqbal, Reece Christian, David J morgan, David J Willock, Peter Miedziak, Jonathan K. Bartley, Jennifer Edwards, Toru Murayama, Wataru Ueda and Graham Hutchings, ‘Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to -valerolactone’, Green Chem., 2016, Accepted Manuscript. DOI: 10.1039/C6GC02598F

46. Yoshinori Goto, Ken-ichi Shimizu, Kenichi Kon, Takashi Toyao, Toru Murayama, Wataru Ueda, ‘NH3-efficient ammoxidation of toluene by hydrothermally synthesized layered tungsten-vanadium complex metal oxides’, Journal of catalysis, 344 (2016) 346–353. doi: 10.1016/j.jcat.2016.10.013

45. Satoshi Ishikawa, Toru Murayama, Masahiro Kumaki, Masaya Tashiro, Zhenxin Zhang, Akihiro Yoshida, Wataru Ueda, ‘Synthesis of Trigonal Mo–V–M3rd–O (M3rd = Fe, W) Catalysts by Using Structure-Directing Agent and Catalytic Performances for Selective Oxidation of Ethane’ Top Catal (2016) 59:1477–1488. doi:10.1007/s11244-016-0666-z

44. Takashi FUJITA, Masanori HORIKAWA, Takashi TAKEI, Toru MURAYAMA, Masatake HARUTA, ‘Correlation between catalytic activity of supported gold catalysts for carbon monoxide oxidation and metal–oxygen binding energy of the support metal oxides’, Chinese Journal of Catalysis, 2016, 37: 1651-1655. doi: 10.1016/S1872-2067(16)62521-4

43. Toru Murayama, Masatake Haruta, ‘Preparation of gold nanoparticles supported on Nb2O5 by deposition precipitation and deposition reduction methods and their catalytic activity for CO oxidation’, 2016, Chinese Journal of Catalysis, 2016, 37: 1694-1701. doi: 10.1016/S1872-2067(16)62452-X

42. Toru Murayama, Wataru Ueda, Masatake Haruta ‘Deposition of Gold Nanoparticles on Nb2O5 Having Different Crystalline Structures for CO Oxidation at Room Temperature’, Chemcatchem, 8 (2016), 2620-2624, DOI: 10.1002/cctc.201600563.

41. Toru Murayama, Benjamin Katryniok, Svetlana Heyte, Marcia Araque, Satoshi Ishikawa, Franck Dumeignil, Sébastien Paul and Wataru Ueda ‘Role of crystalline structure in allyl alcohol selective oxidation over Mo3VOx complex metal oxide catalysts’, Chemcatchem, 2016, inpress. DOI: 10.1002/cctc.201600430

40. Zhenxin Zhang, Satoshi Ishikawa, Yuta Tsuboi, Masahiro Sadakane, Toru Murayama and Wataru Ueda, ‘New crystalline complex metal oxides created by unit-synthesis and their catalysis based on porous and redox properties’, Faraday Discuss., 2016, 188, 81-98. DOI: 10.1039/c6fd00006a

39. Toru Murayama, Nozomi Kuramata, Wataru Ueda, ‘Hydrothermal Synthesis of W-Ta-O Complex Metal Oxides by Assembling MO6 (M = W or Ta) Octahedra and Creation of Solid Acid’, Journal of Catalysis 339 (2016) 143–152. doi:10.1016/j.jcat.2016.04.007

38. Zhenxin Zhang, Hirofumi Yoshikawa, Zhongyue Zhang, Toru Murayama, Masahiro Sadakane, Yasunori Inoue, Wataru Ueda, Kunio Awaga, Michikazu Hara, ‘Synthesis of Vanadium-Incorporated, Polyoxometalate-Based Open Frameworks and Their Applications for Cathode-Active Materials’, European Journal of Inorganic Chemistry (2016), 1242–1250. doi:10.1002/ejic.201501396

37. Yoshinori Goto, Ken-ichi Shimizu, Toru Murayama, Wataru Ueda, ‘Hydrothermal synthesis of microporous W-V-O as an efficient catalyst for ammoxidation of 3-picoline’, Applied Catalysis, A: General (2016), 509, 118-122. doi:10.1016/j.apcata.2015.10.011

2015

36. Zhenxin Zhang, Toru Murayama, Masahiro Sadakane, Hiroko Ariga, Nobuhiro Yasuda, Norihito Sakaguchi, Kiyotaka Asakura, Wataru Ueda, ‘Ultrathin inorganic molecular nanowire based on polyoxometalates’, Nature Communications, 2015, 6, Article number: 7731. doi:10.1038/ncomms8731.

35. Kaori Omata, Keeko Matsumoto, Toru Murayama, Wataru Ueda, ‘Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts’, Catalysis Today (2015), 259(1), 205-212. doi:10.1016/j.cattod.2015.07.016

34. Satoshi Ishikawa, Daichi Kobayashi, Takeshi Konya, Shunpei Ohmura, Toru Murayama, Nobuhiro Yasuda, Masahiro Sadakane, Wataru Ueda, ‘Redox Treatment of Orthorhombic Mo29V11O112 and Relationships between Crystal Structure, Microporosity and Catalytic Performance for Selective Oxidation of Ethane’, Journal of Physical Chemistry C (2015), 119(13), 7195-7206. doi: 10.1021/jp512848w

33. Zhenxin Zhang, Masahiro Sadakane, Shin-ichiro Noro, Toru Murayama, Takashi Kamachi, Kazunari Yoshizawa, Wataru Ueda, “Selective Carbon Dioxide Adsorption of e-Keggin-type Zincomolybdate-based Purely-Inorganic 3D Frameworks”, Journal of Materials Chemistry A, 2015,3, 746-755. doi: 10.1039/C4TA05496B

32. C. Qiu, C. Chen, S. Ishikawa, Z. Zhang, T. Murayama, W. Ueda, “Synthesis of Crystalline Mo-V-W-O Complex Oxides with Orthorhombic and Trigonal Structures and Their Application as Catalysts”, Catalysis, Structure & Reactivity, 2015, 1, 71-77. doi: 10.1179/2055075814Y.0000000009

2014

31. Toru Murayama, Junli Chen, Jun Hirata, Keeko Matsumoto and Wataru Ueda, "Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid", Catalysis Science & Technology, 2014, 4, 4250-4257. doi: 10.1039/C4CY00713A

30. Y. Nakamura, T. Murayama, W. Ueda, “Reduced Vanadium and Molybdenum Oxides Catalyze the Equivalent Formation of Ethane and Acetaldehyde from Ethanol”, ChemCatChem, 6(3), 741–744 (2014). DOI: 10.1002/cctc.201300991

29. Y. Nakamura, T. Murayama, W. Ueda, "Hydrogen-transfer dehydration between alcohols over V2O3 and MoO2 catalysts for the formation of corresponding alkanes and aldehydes", Journal of Molecular Catalysis A: Chemical, 394 (2014) 137–144. doi:10.1016/j.molcata.2014.07.009

28. K. Omata, K. Matsumoto, T. Murayama, W. Ueda, “Direct oxidative transformation of glycerol into acrylic acid over phosphoric acid-added W-V-Nb complex metal oxide catalysts”, Chemistry Letters, 43 (2014) 435-437, doi:10.1246/cl.131098

27. Z. Zhang, M. Sadakane, T. Murayama, S. Izumi, N. Yasuda, N. Sakaguchi, W. Ueda, “Tetrahedral Connection of ε-Keggin-type Polyoxometalates To Form an All-Inorganic Octahedral Molecular Sieve with an Intrinsic 3D Pore System”, Inorganic Chemistry, 2014, 53 (2), 903–911, doi: 10.1021/ic4022849

26. S. Ishikawa, X. Yi, T. Murayama, W. Ueda, “Catalysis field in orthorhombic Mo3VOx oxide catalyst for the selective oxidation of ethane, propane and acrolein”, Catalysis Today, (2014), 238, 35-40.

25. S. Ishikawa, M. Tashiro, T. Murayama, W. Ueda, "Seed-assisted synthesis of crystalline Mo3VOx oxides and their crystal formation mechanism", Crystal Growth & Design, (2014), 14(9), 4553-4561.

24. Z. Zhang, M. Sadakane, T. Murayama, N. Sakaguchi, W. Ueda, "Preparation, Structural Characterization, and Ion-exchange Properties of two New Zeolite-like 3D Frameworks Constructed by ε-Keggin-type Polyoxometalates with Binding Metal Ions, H11.4[ZnMo12O40Zn2]1.5- and H7.5[Mn0.2Mo12O40Mn2]2.1-", Inorganic Chemistry, 2014, 53 (14), 7309-7318. DOI: 10.1021/ic500630h

23. Z. Zhang, M. Sadakane, T. Murayama, W. Ueda, "Investigation of the Formation Process of Zeolite-like 3D Frameworks Constructed with ε-Keggin-type Polyoxovanadomolybdates with Binding Bismuth Ions and Preparation of a Nano-crystal", Dalton Transactions, (2014), 43(36), 13584-13590. DOI: 10.1039/C4DT01227E

22. Chuntian Qiu, Chen Chen, Satoshi Ishikawa, Toru Murayama, Wataru Ueda, “Crystalline Mo-V-W-mixed Oxide with Orthorhombic and Trigonal Structures as Highly Efficient Oxidation Catalysts of Acrolein to Acrylic Acid”, Topics in Catalysis, 2014, 57(14-16), 1163-1170.

2013

21. T. Konya, T. Katou, T. Murayama, S. Ishikawa, M. Sadakane, D. Buttrey, W. Ueda, “An orthorhombic Mo3VOx catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides”, Catalysis Science & Technology, 2013, 3, 380-387.

20. K. Omata, S. Izumi, T. Murayama, W. Ueda, “Hydrothermal synthesis of W-Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein”, Catalysis Today, (2013) 201, 7-11. doi:10.1016/j.cattod.2012.06.004

19. M. Sadakane, K. Endo, K. Kodato, S. Ishikawa, T. Murayama, W. Ueda, “Assembly of a Pentagonal Polyoxomolybdate Building Block, [Mo6O21]6-, into Crystalline MoV Oxides”, European Journal of Inorganic Chemistry, 2013, 10-11 1731-1736.

18. S, Ishikawa, X. Yi, T. Murayama, W. Ueda, “Heptagonal channel micropore of orthorhombic Mo3VOx as catalysis field for the selective oxidation of ethane”, Applied Catalysis, A: General, 474 (2014) 10-17.

17. S. Ishikawa, T. Murayama, S. Ohmura, M. Sadakane, W. Ueda, “Synthesis of Novel Orthorhombic Mo and V Based Complex Oxides Coordinating Alkylammonium Cation in Its Heptagonal Channel and Their Application as a Catalyst”, Chemistry of Materials (2013), 25(11), 2211-2219.

16. C. Chen, N. Kosuke, T. Murayama, W. Ueda, “Single-Crystalline-Phase Mo3VOx: An Efficient Catalyst for the Partial Oxidation of Acrolein to Acrylic Acid”, ChemCatChem, (2013), 5(10), 2869-2873.

15. T. Takeguchi, H. Watanabe, T. Murayama, H. Takahashi, W. Ueda, “Quantitative Analysis of Coke Formation during Steam Reforming of Methane on a Nickel–Hydrotalcite Catalyst under Practical Operation Conditions”, Chemistry Letter, 42(2), (2013) 124-126

14. I. Yamanaka, R. Ichihashi, T. Iwasaki, N. Nishimura, T. Murayama, W. Ueda, S. Takenaka, “Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation”, Electrochimica Acta, 108 (2013) 321-329.

2012

13. T. Murayama, N. Kuramata, S. Takatama, K. Nakatani, S. Izumi, X. Yi, W. Ueda,“Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements”, Catalysis Today, 185(1), 2012, 224-229. doi:10.1016/j.cattod.2011.10.029

12. T. Murayama, T. Hayashi, R. Kanega, I. Yamanaka,“Phosgene-Free Method for Diphenyl Carbonate Synthesis at the Pd0/Ketjenblack Anode”, Journal of Physical Chemistry C, 2012, 116,19, 10607-10616.

11. M. Sadakane, R. Kato, T. Murayama, W. Ueda,“Morphology-controlled preparation of iron-based oxides using a paper template”, Materials Letters, 2012, 81, 80-83.

2011

10. T. Murayama, T. Hayashi, Y. Arai, I. Yamanaka,“Direct Synthesis of Diphenyl Carbonate by Mediated Electrocarbonylation of Phenol at Pd2+-Supported Activated Carbon Anode”, Electrochimica Acta, 2011, 56, 2926-2933.

9. I. Yamanaka, T. Onisawa, T. Hashimoto, T. Murayama,“A Fuel-Cell Reactor for the Direct Synthesis of Hydrogen Peroxide Alkaline Solutions from H2 and O2”, ChemSusChem, 2011, 4, 494-501.

8. T. Murayama, S. Tazawa, S. Takenaka, I. Yamanaka,“Catalytic neutral hydrogen peroxide synthesis from O2 and H2 by PEM fuel cell”, Catalysis Today, 2011, 164, 163-168.

7. T. Murayama, I. Yamanaka,“Electrosynthesis of Neutral H2O2 Solution from O2 and Water at a Mixed Carbon Cathode using an Exposed SPE Electrolysis Cell”, The Journal of Physical Chemistry C, 2011, 115,13, 5792-5799.

6. M. Sadakane, S. Ohmura, K. Kodato, T. Fujisawa, K. Kato, K. Shimidzu, T. Murayama, W. Ueda,“Redox tunable reversible molecular sieves: orthorhombic molybdenum vanadium oxide”, Chem. Commun., 2011, 47, 10812-10814.

5. M. Sadakane, R. Kato, T. Murayama, W. Ueda,“Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3”, J. Solid. State. Chem. 2011, 184(8), 2299-2305.

2010

4. I. Yamanaka, S. Tazawa, T. Murayama, T. Iwasaki, S. Takenaka, “Catalytic Synthesis of Neutral Hydrogen Peroxide at a CoN2Cx Cathode of a Polymer Electrolyte Membrane Fuel Cell (PEMFC)” ChemSusChem, 3,59-62 (2010)

3. T. Murayama, Y. Arai, T. Hayashi, I. Yamanaka,“Direct Synthesis of Diphenyl Carbonate by Electrocarbonylation at a Pd2+-supported Anode”, Chem. Lett. 2010, 39, 418-419.

2008

2. I. Yamanaka, T. Murayama “Neutral H2O2 Synthesis by Electrolysis of Water and O2”, Angew. Chem. Int. Ed. 2008, 47, 1900 -1902.

1. I. Yamanaka, S. Tazawa, T. Murayama, R. Ichihashi, N. Hanaizumi “Catalytic Synthesis of Neutral H2O2 Solutions from O2 and H2 by a Fuel Cell Reaction”, ChemSusChem, 1, 988-990 (2008).

(国際会議論文)

2009

1. T. Murayama and I. Yamanaka, “Neutral H2O2 synthesis by electrolysis of O2 and water” ECS Tans., 25 (18), 19-24 (2009). (プロシーディング)

2. A. Funakawa, T. Murayama, I. Yamanaka, “Study of the Electrochemical Carbonylation of Ethanol and Ethylene at Pd/C Anode”, ECS Tans., 25 (18), 35-40 (2009). (プロシーディング)

(総説・解説)

7. 石川理史,村山 徹,上田 渉,マイクロポーラスMo-V-O複合酸化物の調製と選択酸化反応への応用,ゼオライト,2016, Vol.33, No.4, 110-120.

6. 村山 徹,Zhang Zhenxin,定金 正洋,上田 渉,坂口 紀史,複合金属酸化物ナノワイヤの合成と構造解析,NanotechJapan Bulletin, Vol. 9, No. 3, 2016年6月30日発行.

5. 村山 徹,NOの脱硝反応における赤外分光を用いたガスの定量,FTIR TALK LETTER, vol.26,2016年6月7日発行.

4. 村山 徹,金ナノ粒子担持触媒の利用~バイオマス転換反応を例に~,触媒, vol. 58, No 2,114(2016)(トピックス)

3. 上田 渉・村山 徹, 固体酸化物触媒の真髄に迫る~複雑結晶構造が生みだす触媒機能~, 化学, 2013, 68(2), 70-71.

2. 上田 渉・村山 徹・石川 理史, 複雑結晶構造を持った選択酸化用複合酸化物触媒,化学工業, 2013, 64(10) 57-63.

1. 村山 徹・上田 渉, 結晶性Mo-V-O複合酸化物を用いた低級アルカン選択酸化反応,触媒, 55(3), 2013, 148-153.

受 賞
主な学会活動 触媒学会,石油学会,電気化学会
社会等との関わり
個人のURL
担当科目
オフィスアワー
研究室 フロンティア研究棟 203室
内線番号 5563
メールアドレス murayama@tmu.ac.jp
研究室サイト等 http://www.haruta-masatake.ues.tmu.ac.jp/
個人サイト https://scholar.google.co.jp/citations?user=ugtE3SoAAAAJ&hl=ja外部リンク
自己紹介・研究紹介

2005年3月 東京工業大学 化学工学科 応用化学コース 卒業
2007年3月 東京工業大学大学院 理工学研究科 応用化学専攻  修士課程 修了
2010年3月 東京工業大学大学院 理工学研究科 応用化学専攻  博士課程 修了
2010年4月 北海道大学 触媒化学研究センター 助教
2015年4月 首都大学東京 都市環境学部 特任准教授
2016年4月 現職